PAGE: Parallel Scalable Regionalization Framework

IF 1.2 Q4 REMOTE SENSING
Hussah Alrashid, Yongyi Liu, A. Magdy
{"title":"PAGE: Parallel Scalable Regionalization Framework","authors":"Hussah Alrashid, Yongyi Liu, A. Magdy","doi":"10.1145/3611011","DOIUrl":null,"url":null,"abstract":"Regionalization techniques group spatial areas into a set of homogeneous regions to analyze and draw conclusions about spatial phenomena. A recent regionalization problem, called MP-regions, groups spatial areas to produce a maximum number of regions by enforcing a user-defined constraint at the regional level. The MP-regions problem is NP-hard. Existing approximate algorithms for MP-regions do not scale for large datasets due to their high computational cost and inherently centralized approaches to process data. This article introduces a parallel scalable regionalization framework (PAGE) to support MP-regions on large datasets. The proposed framework works in two stages. The first stage finds an initial solution through randomized search, and the second stage improves this solution through efficient heuristic search. To build an initial solution efficiently, we extend traditional spatial partitioning techniques to enable parallelized region building without violating the spatial constraints. Furthermore, we optimize the region building efficiency and quality by tuning the randomized area selection to trade off runtime with region homogeneity. The experimental evaluation shows the superiority of our framework to support an order of magnitude larger datasets efficiently compared to the state-of-the-art techniques while producing high-quality solutions.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":"9 1","pages":"1 - 26"},"PeriodicalIF":1.2000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3611011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Regionalization techniques group spatial areas into a set of homogeneous regions to analyze and draw conclusions about spatial phenomena. A recent regionalization problem, called MP-regions, groups spatial areas to produce a maximum number of regions by enforcing a user-defined constraint at the regional level. The MP-regions problem is NP-hard. Existing approximate algorithms for MP-regions do not scale for large datasets due to their high computational cost and inherently centralized approaches to process data. This article introduces a parallel scalable regionalization framework (PAGE) to support MP-regions on large datasets. The proposed framework works in two stages. The first stage finds an initial solution through randomized search, and the second stage improves this solution through efficient heuristic search. To build an initial solution efficiently, we extend traditional spatial partitioning techniques to enable parallelized region building without violating the spatial constraints. Furthermore, we optimize the region building efficiency and quality by tuning the randomized area selection to trade off runtime with region homogeneity. The experimental evaluation shows the superiority of our framework to support an order of magnitude larger datasets efficiently compared to the state-of-the-art techniques while producing high-quality solutions.
PAGE:并行可扩展区域化框架
区域化技术将空间区域划分为一组同质区域,以分析并得出有关空间现象的结论。最近的一个区域化问题称为MP区域,通过在区域级别强制执行用户定义的约束,将空间区域分组,以产生最大数量的区域。MP区域问题是NP难问题。MP区域的现有近似算法由于其高计算成本和固有的集中式数据处理方法而不能扩展到大型数据集。本文介绍了一个并行可扩展区域化框架(PAGE),以支持大型数据集上的MP区域。拟议的框架分为两个阶段。第一阶段通过随机搜索找到初始解,第二阶段通过有效的启发式搜索改进该解。为了有效地构建初始解决方案,我们扩展了传统的空间划分技术,在不违反空间约束的情况下实现了并行区域构建。此外,我们通过调整随机区域选择来优化区域构建效率和质量,以权衡运行时间和区域同质性。实验评估表明,与最先进的技术相比,我们的框架在高效支持一个数量级的更大数据集的同时,还能产生高质量的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
5.30%
发文量
43
期刊介绍: ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信