Accurate computations with totally positive matrices applied to the computation of Gaussian quadrature formulae

IF 0.7 4区 数学 Q2 Mathematics
A. Marco, José‐Javier Martínez, Raquel Viaña
{"title":"Accurate computations with totally positive matrices applied to the computation of Gaussian quadrature formulae","authors":"A. Marco, José‐Javier Martínez, Raquel Viaña","doi":"10.13001/ela.2022.7185","DOIUrl":null,"url":null,"abstract":"For some families of classical orthogonal polynomials defined on appropriate intervals, it is shown that the corresponding Jacobi matrices are totally positive and their bidiagonal factorizations can be accurately computed. By exploiting these facts, an algorithm to compute with high relative accuracy the eigenvalues of those Jacobi matrices, and consequently the nodes of Gaussian quadrature formulae for those families of orthogonal polynomials, is presented. An algorithm is also presented for the computation of the eigenvectors of these Jacobi matrices, and hence the weights of Gaussian quadrature formulae. Although in this case high relative accuracy is not theoretically guaranteed, the numerical experiments with our algorithm provide very accurate results.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.7185","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

For some families of classical orthogonal polynomials defined on appropriate intervals, it is shown that the corresponding Jacobi matrices are totally positive and their bidiagonal factorizations can be accurately computed. By exploiting these facts, an algorithm to compute with high relative accuracy the eigenvalues of those Jacobi matrices, and consequently the nodes of Gaussian quadrature formulae for those families of orthogonal polynomials, is presented. An algorithm is also presented for the computation of the eigenvectors of these Jacobi matrices, and hence the weights of Gaussian quadrature formulae. Although in this case high relative accuracy is not theoretically guaranteed, the numerical experiments with our algorithm provide very accurate results.
全正矩阵的精确计算在高斯求积公式计算中的应用
对于定义在适当区间上的经典正交多项式族,证明了其对应的雅可比矩阵是完全正的,其双对角分解是可以精确计算的。利用这些事实,提出了一种相对精度较高的计算雅可比矩阵特征值的算法,从而计算出这些正交多项式族的高斯正交公式的节点。本文还提出了计算这些雅可比矩阵的特征向量的算法,从而计算高斯正交公式的权值。虽然在这种情况下,理论上不能保证较高的相对精度,但用我们的算法进行的数值实验提供了非常准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信