Investigating the combined effect of aggregate size and sulphate attack on producing sustainable recycled aggregate concrete

IF 1.6 Q3 ENGINEERING, CIVIL
Md. Habibur Rahman Sobuz, Shuvo Dip Datta, Abu Sayed Mohammad Akid
{"title":"Investigating the combined effect of aggregate size and sulphate attack on producing sustainable recycled aggregate concrete","authors":"Md. Habibur Rahman Sobuz, Shuvo Dip Datta, Abu Sayed Mohammad Akid","doi":"10.1080/14488353.2022.2088646","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study investigates the performance of recycled aggregate concrete incorporating different sizes and concentrations of coarse aggregate under sodium sulphate and normal water curing. Ten mixes were produced, having two control mixes of 12 to 20 mm and 5 to 12 mm coarse aggregate size. The rest of the mixes have supplementary cementitious material with 0%, 15%, 30%, and 45% substitution of respective sizes normal aggregate by recycled aggregate. The fresh recycled aggregate concrete mixes were assessed through the slump, ball penetration, and compacting factor test, which exhibited a falling trend with the percentage increase of recycled aggregate. Moreover, compressive strength and ultrasonic pulse velocity drop with the percentage of RCA increases at 7, 28, and 91-days normal curing and 5% Na2SO4 solution curing at 91 days. The compressive strength and ultrasonic pulse velocity of 5-12 mm coarse aggregate concrete showed improvement over 12–20 mm coarse aggregate concrete of the same replacement for both curing. However, 5% Na2SO4 solution curing specimens exhibit around 5–11% decrease in compressive strength and higher penetration depth than normal curing . Furthermore, the outer face of the silica fume included samples have received fewer white patches after sodium sulphate immersion.","PeriodicalId":44354,"journal":{"name":"Australian Journal of Civil Engineering","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14488353.2022.2088646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 10

Abstract

ABSTRACT This study investigates the performance of recycled aggregate concrete incorporating different sizes and concentrations of coarse aggregate under sodium sulphate and normal water curing. Ten mixes were produced, having two control mixes of 12 to 20 mm and 5 to 12 mm coarse aggregate size. The rest of the mixes have supplementary cementitious material with 0%, 15%, 30%, and 45% substitution of respective sizes normal aggregate by recycled aggregate. The fresh recycled aggregate concrete mixes were assessed through the slump, ball penetration, and compacting factor test, which exhibited a falling trend with the percentage increase of recycled aggregate. Moreover, compressive strength and ultrasonic pulse velocity drop with the percentage of RCA increases at 7, 28, and 91-days normal curing and 5% Na2SO4 solution curing at 91 days. The compressive strength and ultrasonic pulse velocity of 5-12 mm coarse aggregate concrete showed improvement over 12–20 mm coarse aggregate concrete of the same replacement for both curing. However, 5% Na2SO4 solution curing specimens exhibit around 5–11% decrease in compressive strength and higher penetration depth than normal curing . Furthermore, the outer face of the silica fume included samples have received fewer white patches after sodium sulphate immersion.
研究了骨料粒度和硫酸盐侵蚀对可持续再生骨料混凝土生产的综合影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
7.70%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信