{"title":"New definitions of thermodynamic temperature and entropy not based on the concepts of heat and thermal reservoir","authors":"G. Beretta, E. Zanchini","doi":"10.1478/AAPP.97S1A1","DOIUrl":null,"url":null,"abstract":"From a new rigorous formulation of the general axiomatic foundations of thermodynamics we derive an operational definition of entropy that responds to the emergent need in many technological frameworks to understand and deploy thermodynamic entropy well beyond the traditional realm of equilibrium states of macroscopic systems. The new treatment starts from a previously developed set of carefully worded operational definitions for all the necessary basic concepts, and is not based on the traditional ones of \"heat\" and of \"thermal reservoir.\" It is achieved in three steps. First, a new definition of thermodynamic temperature is stated, for any stable equilibrium state. Then, by employing this definition, a measurement procedure is developed which defines uniquely the property entropy in a broad domain of states, which could include in principle, even some non-equilibrium states of few-particle systems, provided they are separable and uncorrelated. Finally, the domain of validity of the definition is extended, possibly to every state of every system, by a different procedure, based on the preceding one, which associates a range of entropy values to any state not included in the previous domain. The principle of entropy non-decrease and the additivity of entropy are proved in both the domains considered.","PeriodicalId":43431,"journal":{"name":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1478/AAPP.97S1A1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
From a new rigorous formulation of the general axiomatic foundations of thermodynamics we derive an operational definition of entropy that responds to the emergent need in many technological frameworks to understand and deploy thermodynamic entropy well beyond the traditional realm of equilibrium states of macroscopic systems. The new treatment starts from a previously developed set of carefully worded operational definitions for all the necessary basic concepts, and is not based on the traditional ones of "heat" and of "thermal reservoir." It is achieved in three steps. First, a new definition of thermodynamic temperature is stated, for any stable equilibrium state. Then, by employing this definition, a measurement procedure is developed which defines uniquely the property entropy in a broad domain of states, which could include in principle, even some non-equilibrium states of few-particle systems, provided they are separable and uncorrelated. Finally, the domain of validity of the definition is extended, possibly to every state of every system, by a different procedure, based on the preceding one, which associates a range of entropy values to any state not included in the previous domain. The principle of entropy non-decrease and the additivity of entropy are proved in both the domains considered.
期刊介绍:
This journal is of a multi- and inter-disciplinary nature and covers a broad range of fields including mathematics, computer science, physics, chemistry, biology, earth sciences, and their intersection. History of science is also included within the topics addressed by the journal. The transactions of the Pelorian Academy started out as periodic news sheets containing the notes presented by the members of the Divisions into which the Academy has been and still is organized, according to subject areas. The publication of these notes for the Division (“Classe”) of Mathematical, Physical and Natural Sciences is the responsibility of the Editorial Committee, which is composed of the Director of the division with the role of Chairman, the Vice-Director, the Secretary and two or more other members. Besides original research articles, the journal also accepts texts from conferences and invited talks held in the Academy. These contributions are published in a different section of the journal. In addition to the regular issues, single monographic supplements are occasionally published which assemble reports and communications presented at congresses, symposia, seminars, study meetings and other scientific events organized by the Academy or under its patronage. Since 2004 these transactions have been published online in the form of an open access electronic journal.