Xinxin Chen, Adam Dor-On, Langwen Hui, C. Linden, Yifan Zhang
{"title":"Doob equivalence and non-commutative peaking for Markov chains","authors":"Xinxin Chen, Adam Dor-On, Langwen Hui, C. Linden, Yifan Zhang","doi":"10.4171/jncg/444","DOIUrl":null,"url":null,"abstract":"In this paper we show how questions about operator algebras constructed from stochastic matrices motivate new results in the study of harmonic functions on Markov chains. More precisely, we characterize coincidence of conditional probabilities in terms of (generalized) Doob transforms, which then leads to a stronger classification result for the associated operator algebras in terms of spectral radius and strong Liouville property. Furthermore, we characterize the non-commutative peak points of the associated operator algebra in a way that allows one to determine them from inspecting the matrix. This leads to a concrete analogue of the maximum modulus principle for computing the norm of operators in the ampliated operator algebras.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/444","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper we show how questions about operator algebras constructed from stochastic matrices motivate new results in the study of harmonic functions on Markov chains. More precisely, we characterize coincidence of conditional probabilities in terms of (generalized) Doob transforms, which then leads to a stronger classification result for the associated operator algebras in terms of spectral radius and strong Liouville property. Furthermore, we characterize the non-commutative peak points of the associated operator algebra in a way that allows one to determine them from inspecting the matrix. This leads to a concrete analogue of the maximum modulus principle for computing the norm of operators in the ampliated operator algebras.
期刊介绍:
The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular:
Hochschild and cyclic cohomology
K-theory and index theory
Measure theory and topology of noncommutative spaces, operator algebras
Spectral geometry of noncommutative spaces
Noncommutative algebraic geometry
Hopf algebras and quantum groups
Foliations, groupoids, stacks, gerbes
Deformations and quantization
Noncommutative spaces in number theory and arithmetic geometry
Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.