A. Hentati, Mbarka Selmi, Tarek Kormi, N. B. H. Ali
{"title":"Random finite element method for bearing capacity assessment of a shallow foundation under varied uniaxial loadings","authors":"A. Hentati, Mbarka Selmi, Tarek Kormi, N. B. H. Ali","doi":"10.1504/IJRS.2018.10016359","DOIUrl":null,"url":null,"abstract":"This paper focuses on the application of the random finite element method (RFEM) for the assessment of the uniaxial bearing capacities of a shallow foundation subjected to centred vertical, horizontal and rotational loadings. The analysis combines finite element modelling, spatial variability analysis and Monte Carlo simulation. For this, the soil undrained shear strength is assumed to be variable in both horizontal and vertical directions with spatial dependency expressed via a Markovian autocorrelation function. The application of the proposed methodology to a shallow foundation permitted to highlight the insufficiency of the deterministic approach to predict the uniaxial foundation bearing capacities and led to different failure mechanisms.","PeriodicalId":39031,"journal":{"name":"International Journal of Reliability and Safety","volume":"12 1","pages":"237-260"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliability and Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJRS.2018.10016359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the application of the random finite element method (RFEM) for the assessment of the uniaxial bearing capacities of a shallow foundation subjected to centred vertical, horizontal and rotational loadings. The analysis combines finite element modelling, spatial variability analysis and Monte Carlo simulation. For this, the soil undrained shear strength is assumed to be variable in both horizontal and vertical directions with spatial dependency expressed via a Markovian autocorrelation function. The application of the proposed methodology to a shallow foundation permitted to highlight the insufficiency of the deterministic approach to predict the uniaxial foundation bearing capacities and led to different failure mechanisms.