A. Maryoto, B. Gan, N. I. S. Hermanto, R. Setijadi
{"title":"The Compressive Strength and Resistivity toward Corrosion Attacks by Chloride Ion of Concrete Containing Type I Cement and Calcium Stearate","authors":"A. Maryoto, B. Gan, N. I. S. Hermanto, R. Setijadi","doi":"10.1155/2018/2042510","DOIUrl":null,"url":null,"abstract":"This study aims to determine the effect of calcium stearate on concrete. Three kinds of concrete quality are studied, namely, 20, 30, and 40 MPa. Tests performed in the laboratory comprise a compressive strength test and an infiltration test of chloride ion content. The specimens used were cylinders with a diameter of 150 mm and height of 300 mm. The chloride ion infiltration test was carried out on a cube with sides of 150 mm. The infiltration of ions into the concrete was examined at depths of 1, 2, 4, 6, and 8 cm. Four dosages of calcium stearate were added to the concrete, namely, 0, 0.25, 1.27, and 2.53% for 20 MPa concrete; 0, 0.21, 1.07, and 2.48% for 30 MPa concrete; and 0, 0.19, 0.90, and 1.87% for 40 MPa concrete. The results of compressive strength tests indicate that the amount of calcium stearate that could be safely applied to the concrete was 0.25% of the weight of cement. On the other hand, the infiltration of chloride ions at a depth of 6 cm from the unprotected concrete surface decreased by 87, 69, and 113% for the 20, 30, and 40 MPa concrete, respectively, compared to concrete without calcium stearate. The test shows that the use of calcium stearate in concrete significantly increases its resistivity against corrosion attacks because, in the absence of chloride ions, the process of corrosion does not take place in the concrete.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2018-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/2042510","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/2042510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 6
Abstract
This study aims to determine the effect of calcium stearate on concrete. Three kinds of concrete quality are studied, namely, 20, 30, and 40 MPa. Tests performed in the laboratory comprise a compressive strength test and an infiltration test of chloride ion content. The specimens used were cylinders with a diameter of 150 mm and height of 300 mm. The chloride ion infiltration test was carried out on a cube with sides of 150 mm. The infiltration of ions into the concrete was examined at depths of 1, 2, 4, 6, and 8 cm. Four dosages of calcium stearate were added to the concrete, namely, 0, 0.25, 1.27, and 2.53% for 20 MPa concrete; 0, 0.21, 1.07, and 2.48% for 30 MPa concrete; and 0, 0.19, 0.90, and 1.87% for 40 MPa concrete. The results of compressive strength tests indicate that the amount of calcium stearate that could be safely applied to the concrete was 0.25% of the weight of cement. On the other hand, the infiltration of chloride ions at a depth of 6 cm from the unprotected concrete surface decreased by 87, 69, and 113% for the 20, 30, and 40 MPa concrete, respectively, compared to concrete without calcium stearate. The test shows that the use of calcium stearate in concrete significantly increases its resistivity against corrosion attacks because, in the absence of chloride ions, the process of corrosion does not take place in the concrete.