The Compressive Strength and Resistivity toward Corrosion Attacks by Chloride Ion of Concrete Containing Type I Cement and Calcium Stearate

IF 1.5 Q4 ELECTROCHEMISTRY
A. Maryoto, B. Gan, N. I. S. Hermanto, R. Setijadi
{"title":"The Compressive Strength and Resistivity toward Corrosion Attacks by Chloride Ion of Concrete Containing Type I Cement and Calcium Stearate","authors":"A. Maryoto, B. Gan, N. I. S. Hermanto, R. Setijadi","doi":"10.1155/2018/2042510","DOIUrl":null,"url":null,"abstract":"This study aims to determine the effect of calcium stearate on concrete. Three kinds of concrete quality are studied, namely, 20, 30, and 40 MPa. Tests performed in the laboratory comprise a compressive strength test and an infiltration test of chloride ion content. The specimens used were cylinders with a diameter of 150 mm and height of 300 mm. The chloride ion infiltration test was carried out on a cube with sides of 150 mm. The infiltration of ions into the concrete was examined at depths of 1, 2, 4, 6, and 8 cm. Four dosages of calcium stearate were added to the concrete, namely, 0, 0.25, 1.27, and 2.53% for 20 MPa concrete; 0, 0.21, 1.07, and 2.48% for 30 MPa concrete; and 0, 0.19, 0.90, and 1.87% for 40 MPa concrete. The results of compressive strength tests indicate that the amount of calcium stearate that could be safely applied to the concrete was 0.25% of the weight of cement. On the other hand, the infiltration of chloride ions at a depth of 6 cm from the unprotected concrete surface decreased by 87, 69, and 113% for the 20, 30, and 40 MPa concrete, respectively, compared to concrete without calcium stearate. The test shows that the use of calcium stearate in concrete significantly increases its resistivity against corrosion attacks because, in the absence of chloride ions, the process of corrosion does not take place in the concrete.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2018-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/2042510","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/2042510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 6

Abstract

This study aims to determine the effect of calcium stearate on concrete. Three kinds of concrete quality are studied, namely, 20, 30, and 40 MPa. Tests performed in the laboratory comprise a compressive strength test and an infiltration test of chloride ion content. The specimens used were cylinders with a diameter of 150 mm and height of 300 mm. The chloride ion infiltration test was carried out on a cube with sides of 150 mm. The infiltration of ions into the concrete was examined at depths of 1, 2, 4, 6, and 8 cm. Four dosages of calcium stearate were added to the concrete, namely, 0, 0.25, 1.27, and 2.53% for 20 MPa concrete; 0, 0.21, 1.07, and 2.48% for 30 MPa concrete; and 0, 0.19, 0.90, and 1.87% for 40 MPa concrete. The results of compressive strength tests indicate that the amount of calcium stearate that could be safely applied to the concrete was 0.25% of the weight of cement. On the other hand, the infiltration of chloride ions at a depth of 6 cm from the unprotected concrete surface decreased by 87, 69, and 113% for the 20, 30, and 40 MPa concrete, respectively, compared to concrete without calcium stearate. The test shows that the use of calcium stearate in concrete significantly increases its resistivity against corrosion attacks because, in the absence of chloride ions, the process of corrosion does not take place in the concrete.
含I型水泥和硬脂酸钙混凝土的抗压强度和抗氯离子侵蚀性
本研究旨在确定硬脂酸钙对混凝土的影响。研究了三种混凝土质量,即20、30和40 MPa。在实验室中进行的测试包括抗压强度测试和氯离子含量的渗透测试。使用的试样是直径为150的圆柱体 mm,高度300 mm的立方体上进行氯离子渗透试验 mm。在1、2、4、6和8的深度处检查离子渗透到混凝土中 向混凝土中加入四种剂量的硬脂酸钙,即0、0.25、1.27和2.53%,20 MPa混凝土;0、0.21、1.07和2.48% MPa混凝土;对于40,分别为0、0.19、0.90和1.87% MPa混凝土。抗压强度试验结果表明,可以安全地应用于混凝土的硬脂酸钙的量为水泥重量的0.25%。另一方面,氯离子在深度为6 对于20、30和40,距离无保护混凝土表面的cm分别减少了87、69和113% MPa混凝土,与不含硬脂酸钙的混凝土相比。试验表明,在混凝土中使用硬脂酸钙可以显著提高其抗腐蚀性能,因为在没有氯离子的情况下,混凝土中不会发生腐蚀过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
8
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信