Performance analysis of an optically pumped magnetometer in Earth’s magnetic field

IF 5.8 2区 物理与天体物理 Q1 OPTICS
Gregor Oelsner, Volkmar Schultze, Rob IJsselsteijn, Ronny Stolz
{"title":"Performance analysis of an optically pumped magnetometer in Earth’s magnetic field","authors":"Gregor Oelsner,&nbsp;Volkmar Schultze,&nbsp;Rob IJsselsteijn,&nbsp;Ronny Stolz","doi":"10.1140/epjqt/s40507-019-0076-9","DOIUrl":null,"url":null,"abstract":"<p>We experimentally investigate the influence of the orientation of optically pumped magnetometers in Earth’s magnetic field. We focus our analysis to an operational mode that promises femtotesla field resolutions at such field strengths. For this so-called light-shift dispersed <span>\\(M_{z}\\)</span> (LSD-Mz) regime, we focus on the key parameters defining its performance. That are the reconstructed Larmor frequency, the transfer function between output signal and magnetic field amplitude as well as the shot noise limited field resolution. We demonstrate that due to the use of two well balanced laser beams for optical pumping with different helicities the heading error as well as the field sensitivity of a detector both are only weakly influenced by the heading in a large orientation angle range.</p>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"6 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2019-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1140/epjqt/s40507-019-0076-9","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-019-0076-9","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1

Abstract

We experimentally investigate the influence of the orientation of optically pumped magnetometers in Earth’s magnetic field. We focus our analysis to an operational mode that promises femtotesla field resolutions at such field strengths. For this so-called light-shift dispersed \(M_{z}\) (LSD-Mz) regime, we focus on the key parameters defining its performance. That are the reconstructed Larmor frequency, the transfer function between output signal and magnetic field amplitude as well as the shot noise limited field resolution. We demonstrate that due to the use of two well balanced laser beams for optical pumping with different helicities the heading error as well as the field sensitivity of a detector both are only weakly influenced by the heading in a large orientation angle range.

Abstract Image

光泵磁力仪在地球磁场中的性能分析
我们实验研究了光泵磁力仪在地球磁场中方向的影响。我们将分析重点放在一种运行模式上,该模式有望在这种场强下实现飞特斯拉场分辨率。对于这种所谓的光移分散\(M_{z}\) (LSD-Mz)体制,我们关注的是定义其性能的关键参数。即重构的拉莫尔频率、输出信号与磁场幅值之间的传递函数以及弹粒噪声对场分辨率的限制。我们证明了由于使用两束平衡良好的不同螺旋度的光泵浦激光束,在较大的取向角范围内,探测器的航向误差和场灵敏度仅受航向的微弱影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信