Asymptotic properties of critical points for subcritical Trudinger-Moser functional

IF 2.1 2区 数学 Q1 MATHEMATICS
Masato Hashizume
{"title":"Asymptotic properties of critical points for subcritical Trudinger-Moser functional","authors":"Masato Hashizume","doi":"10.1515/ans-2022-0042","DOIUrl":null,"url":null,"abstract":"Abstract On a smooth bounded domain we study the Trudinger-Moser functional E α ( u ) ≔ ∫ Ω ( e α u 2 − 1 ) d x , u ∈ H 1 ( Ω ) {E}_{\\alpha }\\left(u):= \\mathop{\\int }\\limits_{\\Omega }({e}^{\\alpha {u}^{2}}-1){\\rm{d}}x,\\hspace{1.0em}u\\in {H}^{1}\\left(\\Omega ) for α ∈ ( 0 , 2 π ) \\alpha \\in \\left(0,2\\pi ) and its restriction E α ∣ Σ λ {E}_{\\alpha }{| }_{{\\Sigma }_{\\lambda }} , where Σ λ ≔ u ∈ H 1 ( Ω ) ∣ ∫ Ω ( ∣ ∇ u ∣ 2 + λ u 2 ) d x = 1 {\\Sigma }_{\\lambda }:= \\left\\{u\\in {H}^{1}\\left(\\Omega )| {\\int }_{\\Omega }(| \\nabla u{| }^{2}+\\lambda {u}^{2}){\\rm{d}}x=1\\right\\} for λ > 0 \\lambda \\gt 0 . By applying the asymptotic analysis and the variational method, we obtain asymptotic behavior of critical points of E α ∣ Σ λ {E}_{\\alpha }{| }_{{\\Sigma }_{\\lambda }} both as λ → 0 \\lambda \\to 0 and as λ → + ∞ \\lambda \\to +\\infty . In particular, we prove that when α \\alpha is sufficiently small, maximizers for sup u ∈ Σ λ E α ( u ) {\\sup }_{u\\in {\\Sigma }_{\\lambda }}{E}_{\\alpha }\\left(u) tend to 0 in C ( Ω ¯ ) C\\left(\\overline{\\Omega }) as λ → + ∞ \\lambda \\to +\\infty .","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0042","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract On a smooth bounded domain we study the Trudinger-Moser functional E α ( u ) ≔ ∫ Ω ( e α u 2 − 1 ) d x , u ∈ H 1 ( Ω ) {E}_{\alpha }\left(u):= \mathop{\int }\limits_{\Omega }({e}^{\alpha {u}^{2}}-1){\rm{d}}x,\hspace{1.0em}u\in {H}^{1}\left(\Omega ) for α ∈ ( 0 , 2 π ) \alpha \in \left(0,2\pi ) and its restriction E α ∣ Σ λ {E}_{\alpha }{| }_{{\Sigma }_{\lambda }} , where Σ λ ≔ u ∈ H 1 ( Ω ) ∣ ∫ Ω ( ∣ ∇ u ∣ 2 + λ u 2 ) d x = 1 {\Sigma }_{\lambda }:= \left\{u\in {H}^{1}\left(\Omega )| {\int }_{\Omega }(| \nabla u{| }^{2}+\lambda {u}^{2}){\rm{d}}x=1\right\} for λ > 0 \lambda \gt 0 . By applying the asymptotic analysis and the variational method, we obtain asymptotic behavior of critical points of E α ∣ Σ λ {E}_{\alpha }{| }_{{\Sigma }_{\lambda }} both as λ → 0 \lambda \to 0 and as λ → + ∞ \lambda \to +\infty . In particular, we prove that when α \alpha is sufficiently small, maximizers for sup u ∈ Σ λ E α ( u ) {\sup }_{u\in {\Sigma }_{\lambda }}{E}_{\alpha }\left(u) tend to 0 in C ( Ω ¯ ) C\left(\overline{\Omega }) as λ → + ∞ \lambda \to +\infty .
次临界Trudinger-Moser泛函临界点的渐近性质
摘要在光滑有界域上,我们研究了Trudinger-Moser泛函Eα(u)≔õΩ(Eαu2−1)dx,u∈H1(Ω){E}_{\alpha}\left(u):=\mathop{\int}\limits_{\Omega}({e}^{\aalpha{u}^}2}}-1){\rm{d}x,\ hspace{1.0em}u\在{H}^{1}\left(\Omega)中,对于α∈(0,2π)\alpha\in\left(0,2\pi)及其限制E{E}_{\alpha}{|}_{{Sigma}_}λ},其中∑λ≔u∈H1(Ω)ŞõΩ(⑪uÜ2+λu2)d x=1{\ Sigma}_{\ lambda}:=\left \{u \ in{H}^{1}\left(\Omega)|{int}_。应用渐近分析和变分法,我们得到了EαŞ∑λ临界点的渐近行为{E}_{\alpha}{|}_{Sigma}_→ 0\lambda\到0并且作为λ→ + ∞ \lambda \ to+\ infty。特别地,我们证明了当α\alpha足够小时,supu∈∑λEα(u)的最大化器{E}_{\alpha}\left(u)在C(Ω)中趋向于0{\overline{\Omega}作为λ→ + ∞ \lambda \ to+\ infty。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信