Hydrodynamic Study in a Cone Bottom Stirred Tank Using Computational Fluid Dynamics

IF 1.3 4区 工程技术 Q4 MECHANICS
L. F. Cardona, J. E. Arismendy, G. Quintana, H. Alzate
{"title":"Hydrodynamic Study in a Cone Bottom Stirred Tank Using Computational Fluid Dynamics","authors":"L. F. Cardona, J. E. Arismendy, G. Quintana, H. Alzate","doi":"10.47176/jafm.16.10.1724","DOIUrl":null,"url":null,"abstract":"Stirred tanks are often used in industrial applications to store and process liquids and solids. However, these systems have become an increasing challenge to improve and optimize these processes. Computational Fluids Dynamics (CFD) simulation predicts complex phenomena as hydrodynamics system performance. An optimal solution is found using an effective mesh scheme and selecting appropriate boundary conditions. This work aims to validate and describe the distribution velocities inside the tank using a rigorous turbulence model. Stirred tank with a diameter of 27 cm and an oval cone tip using a Rushton impeller (radial impeller) and a 4-blade impeller inclined at 45° (axial impeller) are performed. For both cases, hydrodynamics in the bottom tank is analyzed. In addition, the power and the pumping numbers for each impeller are studied. The overall results show that at the tip of the oval cone, the asymmetry in the mesh is improved, and the divergence in the solution is avoided. Also, the cone designer increased the turbulent kinetic energy, which can enhance the mixture process. A decrease in power impeller is shown when the axial type is applied at low Reynolds numbers; however, when the cone is introduced inside the tank and a radial impeller type is used, the impeller power values are increased. The overall results of CFD simulation are compared to experimental data and provide similar values with an absolute deviation below 4.46 %.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.16.10.1724","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Stirred tanks are often used in industrial applications to store and process liquids and solids. However, these systems have become an increasing challenge to improve and optimize these processes. Computational Fluids Dynamics (CFD) simulation predicts complex phenomena as hydrodynamics system performance. An optimal solution is found using an effective mesh scheme and selecting appropriate boundary conditions. This work aims to validate and describe the distribution velocities inside the tank using a rigorous turbulence model. Stirred tank with a diameter of 27 cm and an oval cone tip using a Rushton impeller (radial impeller) and a 4-blade impeller inclined at 45° (axial impeller) are performed. For both cases, hydrodynamics in the bottom tank is analyzed. In addition, the power and the pumping numbers for each impeller are studied. The overall results show that at the tip of the oval cone, the asymmetry in the mesh is improved, and the divergence in the solution is avoided. Also, the cone designer increased the turbulent kinetic energy, which can enhance the mixture process. A decrease in power impeller is shown when the axial type is applied at low Reynolds numbers; however, when the cone is introduced inside the tank and a radial impeller type is used, the impeller power values are increased. The overall results of CFD simulation are compared to experimental data and provide similar values with an absolute deviation below 4.46 %.
基于计算流体力学的锥底搅拌槽流体力学研究
搅拌槽通常用于工业应用中储存和处理液体和固体。然而,这些系统已经成为改进和优化这些过程的越来越大的挑战。计算流体动力学(CFD)模拟可以预测流体动力学系统性能等复杂现象。采用有效的网格格式和选择合适的边界条件,求出最优解。这项工作的目的是利用严格的湍流模型来验证和描述槽内的分布速度。采用Rushton叶轮(径向叶轮)和4叶片45°倾斜叶轮(轴向叶轮)对直径为27 cm、椭圆形锥尖的搅拌槽进行搅拌。针对这两种情况,分析了底槽的流体力学。此外,还研究了各叶轮的功率和泵数。总体结果表明,在椭圆锥的尖端处,网格的不对称性得到了改善,解决了解的发散问题。此外,锥形设计器还增加了湍流动能,从而提高了混合过程。在低雷诺数下,轴向型叶轮功率减小;然而,当在槽内引入圆锥体并使用径向叶轮时,叶轮功率值增加。将CFD模拟结果与实验数据进行了比较,得到了相近的数值,绝对偏差在4.46%以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信