Asymptotic expansion of the nonlocal heat content

IF 0.7 3区 数学 Q2 MATHEMATICS
T. Grzywny, Julia Lenczewska
{"title":"Asymptotic expansion of the nonlocal heat content","authors":"T. Grzywny, Julia Lenczewska","doi":"10.4064/sm220831-26-1","DOIUrl":null,"url":null,"abstract":"Let $\\mathbf{X}=\\{X_t\\}_{t\\geq 0}$ be a L\\'evy process in $\\mathbb{R}^d$ and $\\Omega$ be an open subset of $\\mathbb{R}^d$ with finite Lebesgue measure. In this article we consider the quantity $H(t)=\\int_{\\Omega} \\mathbb{P}^x (X_t\\in\\Omega^c) \\, \\mathrm{d}x$ which is called the heat content. We study its asymptotic expansion for isotropic $\\alpha$-stable L\\'evy processes and more general L\\'evy processes, under mild assumptions on the characteristic exponent.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm220831-26-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathbf{X}=\{X_t\}_{t\geq 0}$ be a L\'evy process in $\mathbb{R}^d$ and $\Omega$ be an open subset of $\mathbb{R}^d$ with finite Lebesgue measure. In this article we consider the quantity $H(t)=\int_{\Omega} \mathbb{P}^x (X_t\in\Omega^c) \, \mathrm{d}x$ which is called the heat content. We study its asymptotic expansion for isotropic $\alpha$-stable L\'evy processes and more general L\'evy processes, under mild assumptions on the characteristic exponent.
非局部热含量的渐近展开
设$\mathbf{X}=\{X_t\}_{t\geq 0}$是$\mathbb{R}^d$中的一个L维过程,$\Omega$是具有有限Lebesgue测度的$\mathbb{R}^d$的一个开子集。在本文中,我们考虑数量$H(t)=\int_{\Omega}\mathbb{P}^x(x_t\In\Omega^c)\,\mathrm{d}x$,称为热含量。在特征指数的温和假设下,我们研究了各向同性$\alpha$稳定的L’evy过程和更一般的L’vey过程的渐近展开式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信