Study of the Swelling of a Composite Based on Argan Nut, Urea-Formaldehyde and Water as a Non-Polluting Solvent

IF 1 Q4 MATERIALS SCIENCE, COMPOSITES
F. Fouad, A. Hachim, Hachim Mourabit, S. Mordane, Mordane Bettachy, A. El assyry, A. Derouiche
{"title":"Study of the Swelling of a Composite Based on Argan Nut, Urea-Formaldehyde and Water as a Non-Polluting Solvent","authors":"F. Fouad, A. Hachim, Hachim Mourabit, S. Mordane, Mordane Bettachy, A. El assyry, A. Derouiche","doi":"10.18280/rcma.310505","DOIUrl":null,"url":null,"abstract":"In the center and southwest of Morocco, there is an endemic tree «Argania Spinosa» known as the ironwood. The miraculous product of this millenary tree is argan oil. Known for its therapeutic and cosmetic properties. Only 20% of the fruit of the argan tree is intended for the manufacture of argan oil while the shell, which represents 80%, remains an unexploited resource. This hull, which is sold by farmers at low prices, is used as fuel for baths and Moorish bakeries. In order to value the shells; first, we sort, grind and sieve them. Second, we bind the particles into adhesive. Three biomaterials are based on three particle sizes of shell grains. The designed particles are bound with an adhesive powder that is produced from a pre-catalyzed urea-formaldehyde resin. Moreover, the water used is a non-polluting solvent. The biomaterials and two samples of Red and Beech Wood were immersed in water for 15 days, with mass measurements that were done on a daily basis. It was concluded that the swelling coefficient of the large distribution of biomaterial is smaller than the small distribution of biomaterial. However, Red and Beech Wood have the highest coefficient.","PeriodicalId":42458,"journal":{"name":"Revue des Composites et des Materiaux Avances-Journal of Composite and Advanced Materials","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue des Composites et des Materiaux Avances-Journal of Composite and Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/rcma.310505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 1

Abstract

In the center and southwest of Morocco, there is an endemic tree «Argania Spinosa» known as the ironwood. The miraculous product of this millenary tree is argan oil. Known for its therapeutic and cosmetic properties. Only 20% of the fruit of the argan tree is intended for the manufacture of argan oil while the shell, which represents 80%, remains an unexploited resource. This hull, which is sold by farmers at low prices, is used as fuel for baths and Moorish bakeries. In order to value the shells; first, we sort, grind and sieve them. Second, we bind the particles into adhesive. Three biomaterials are based on three particle sizes of shell grains. The designed particles are bound with an adhesive powder that is produced from a pre-catalyzed urea-formaldehyde resin. Moreover, the water used is a non-polluting solvent. The biomaterials and two samples of Red and Beech Wood were immersed in water for 15 days, with mass measurements that were done on a daily basis. It was concluded that the swelling coefficient of the large distribution of biomaterial is smaller than the small distribution of biomaterial. However, Red and Beech Wood have the highest coefficient.
以摩洛哥坚果、脲醛和水为无污染溶剂的复合材料的溶胀研究
在摩洛哥的中部和西南部,有一种特有的树木“阿甘尼亚·Spinosa”,被称为铁木。这种千年树的神奇产物是摩洛哥坚果油。以其治疗和美容特性而闻名。只有20%的摩洛哥坚果树果实用于制造摩洛哥坚果油,而占80%的外壳仍然是一种未开发的资源。这种贝壳被农民以低价出售,被用作浴室和摩尔人面包店的燃料。为了给贝壳估价;首先,我们对它们进行分类、研磨和筛选。第二步,我们将颗粒粘合成粘合剂。三种生物材料基于壳体颗粒的三种粒径。所设计的颗粒与预催化脲醛树脂生产的粘合剂粉末相结合。而且,所用的水是无污染的溶剂。将生物材料和两种红木和山毛榉木样品浸泡在水中15天,每天进行质量测量。结果表明,大分布的生物材料的膨胀系数小于小分布的生物材料。而红木和山毛榉木的系数最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
25.00%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信