{"title":"A Low-Cost Three-Axis Force Sensor for Wearable Gait Analysis Systems","authors":"Md Shafiqur Rahman, B. Hejrati","doi":"10.1115/1.4053725","DOIUrl":null,"url":null,"abstract":"\n This paper presents the design, analysis, and fabrication of a capacitive-based three-axis force sensor as the building block of a wearable sensing system to directly measure all the components of three-dimensional (3D) ground reaction forces (3D GRFs) during walking. The proposed sensor is low-cost and easy to fabricate with high accuracy, which promotes its accessibility and usability for gait analysis in clinical and research settings. The sensor is comprised of only three parallel capacitors that enable three-axial force measurement while significantly reducing the complexity of fabrication and maintenance prevalent in three-axis force sensors. Comprehensive experiments were conducted to rigorously quantify different aspects of the sensor's performance. The static and dynamic errors along the three axes are less than 2.28%, which is well within the acceptable range for the intended application. The force sensor can decouple three-axial forces with a cross-sensitivity of less than 2%. The developed sensor also demonstrates desirable repeatability and hysteresis behaviors with almost no drift over long periods of usage.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4053725","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents the design, analysis, and fabrication of a capacitive-based three-axis force sensor as the building block of a wearable sensing system to directly measure all the components of three-dimensional (3D) ground reaction forces (3D GRFs) during walking. The proposed sensor is low-cost and easy to fabricate with high accuracy, which promotes its accessibility and usability for gait analysis in clinical and research settings. The sensor is comprised of only three parallel capacitors that enable three-axial force measurement while significantly reducing the complexity of fabrication and maintenance prevalent in three-axis force sensors. Comprehensive experiments were conducted to rigorously quantify different aspects of the sensor's performance. The static and dynamic errors along the three axes are less than 2.28%, which is well within the acceptable range for the intended application. The force sensor can decouple three-axial forces with a cross-sensitivity of less than 2%. The developed sensor also demonstrates desirable repeatability and hysteresis behaviors with almost no drift over long periods of usage.
期刊介绍:
The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.