{"title":"Antioxidant Activity of Fruits of Ligustrum japonicum","authors":"Y. Seo, Hojun Kim","doi":"10.4217/OPR.2017.39.2.115","DOIUrl":null,"url":null,"abstract":"The objective of this study is to evaluate the antioxidant activity of the fruits of Ligustrum japonicum. The crude extract was successively fractionated into n-hexane, 85% aqueous methanol (85% aq.MeOH), n-butanol (n-BuOH), and water fractions by means of solvent polarity. The crude extract and its solvent fractions were evaluated for their antioxidant effect by four different assay systems: scavenging power on peroxynitrite and intralcellular ROS produced in HT-1080 cells; DNA oxidation inhibition; ferric reducing antioxidant power (FRAP). The n-BuOH fraction exhibiting potent antioxidant activity was further purified by C18 silica gel column chromatography and RP-HPLC to give tyrosol (1) and salidroside (2). The structure of isolated compounds was determined by extensive 2 D NMR experiments such as H COSY, NOESY, HSQC and HMBC as well as by comparison with the published spectral data.","PeriodicalId":35665,"journal":{"name":"Ocean and Polar Research","volume":"39 1","pages":"115-124"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean and Polar Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4217/OPR.2017.39.2.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3
Abstract
The objective of this study is to evaluate the antioxidant activity of the fruits of Ligustrum japonicum. The crude extract was successively fractionated into n-hexane, 85% aqueous methanol (85% aq.MeOH), n-butanol (n-BuOH), and water fractions by means of solvent polarity. The crude extract and its solvent fractions were evaluated for their antioxidant effect by four different assay systems: scavenging power on peroxynitrite and intralcellular ROS produced in HT-1080 cells; DNA oxidation inhibition; ferric reducing antioxidant power (FRAP). The n-BuOH fraction exhibiting potent antioxidant activity was further purified by C18 silica gel column chromatography and RP-HPLC to give tyrosol (1) and salidroside (2). The structure of isolated compounds was determined by extensive 2 D NMR experiments such as H COSY, NOESY, HSQC and HMBC as well as by comparison with the published spectral data.