{"title":"Quantum pricing with a smile: implementation of local volatility model on quantum computer","authors":"Kazuya Kaneko, Koichi Miyamoto, Naoyuki Takeda, Kazuyoshi Yoshino","doi":"10.1140/epjqt/s40507-022-00125-2","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum algorithms for the pricing of financial derivatives have been discussed in recent papers. However, the pricing model discussed in those papers is too simple for practical purposes. It motivates us to consider how to implement more complex models used in financial institutions. In this paper, we consider the local volatility (LV) model, in which the volatility of the underlying asset price depends on the price and time. As in previous studies, we use the quantum amplitude estimation (QAE) as the main source of quantum speedup and discuss the state preparation step of the QAE, or equivalently, the implementation of the asset price evolution. We compare two types of state preparation: One is the <i>amplitude encoding</i> (AE) type, where the probability distribution of the derivative’s payoff is encoded to the probabilistic amplitude. The other is the <i>pseudo-random number</i> (PRN) type, where sequences of PRNs are used to simulate the asset price evolution as in classical Monte Carlo simulation. We present detailed circuit diagrams for implementing these preparation methods in fault-tolerant quantum computation and roughly estimate required resources such as the number of qubits and T-count.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"9 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-022-00125-2","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-022-00125-2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 29
Abstract
Quantum algorithms for the pricing of financial derivatives have been discussed in recent papers. However, the pricing model discussed in those papers is too simple for practical purposes. It motivates us to consider how to implement more complex models used in financial institutions. In this paper, we consider the local volatility (LV) model, in which the volatility of the underlying asset price depends on the price and time. As in previous studies, we use the quantum amplitude estimation (QAE) as the main source of quantum speedup and discuss the state preparation step of the QAE, or equivalently, the implementation of the asset price evolution. We compare two types of state preparation: One is the amplitude encoding (AE) type, where the probability distribution of the derivative’s payoff is encoded to the probabilistic amplitude. The other is the pseudo-random number (PRN) type, where sequences of PRNs are used to simulate the asset price evolution as in classical Monte Carlo simulation. We present detailed circuit diagrams for implementing these preparation methods in fault-tolerant quantum computation and roughly estimate required resources such as the number of qubits and T-count.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.