Sparse block-structured random matrices: universality

IF 2.6 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
G. M. Cicuta, M. Pernici
{"title":"Sparse block-structured random matrices: universality","authors":"G. M. Cicuta, M. Pernici","doi":"10.1088/2632-072X/acc71a","DOIUrl":null,"url":null,"abstract":"We study ensembles of sparse block-structured random matrices generated from the adjacency matrix of a Erdös–Renyi random graph with N vertices of average degree Z, inserting a real symmetric d × d random block at each non-vanishing entry. We consider several ensembles of random block matrices with rank r < d and with maximal rank, r = d. The spectral moments of the sparse block-structured random matrix are evaluated for N→∞ , d finite or infinite, and several probability distributions for the blocks (e.g. fixed trace, bounded trace and Gaussian). Because of the concentration of the probability measure in the d→∞ limit, the spectral moments are independent of the probability measure of the blocks (with mild assumptions of isotropy, smoothness and sub-Gaussian tails). The effective medium approximation is the limiting spectral density of the sparse block-structured random ensembles with finite rank. Analogous classes of universality hold for the Laplacian sparse block-structured ensemble. The same limiting distributions are obtained using random regular graphs instead of Erdös–Renyi graphs.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072X/acc71a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We study ensembles of sparse block-structured random matrices generated from the adjacency matrix of a Erdös–Renyi random graph with N vertices of average degree Z, inserting a real symmetric d × d random block at each non-vanishing entry. We consider several ensembles of random block matrices with rank r < d and with maximal rank, r = d. The spectral moments of the sparse block-structured random matrix are evaluated for N→∞ , d finite or infinite, and several probability distributions for the blocks (e.g. fixed trace, bounded trace and Gaussian). Because of the concentration of the probability measure in the d→∞ limit, the spectral moments are independent of the probability measure of the blocks (with mild assumptions of isotropy, smoothness and sub-Gaussian tails). The effective medium approximation is the limiting spectral density of the sparse block-structured random ensembles with finite rank. Analogous classes of universality hold for the Laplacian sparse block-structured ensemble. The same limiting distributions are obtained using random regular graphs instead of Erdös–Renyi graphs.
稀疏块结构随机矩阵:通用性
我们研究了由具有N个平均度为Z的顶点的Erdös–Renyi随机图的邻接矩阵生成的稀疏块结构随机矩阵的集合,插入了实对称d × d随机块。我们考虑秩为r的随机块矩阵的几个集合 < d和具有最大秩的r = d.对于N,评估稀疏块结构随机矩阵的谱矩→∞ , d有限或无限,以及块的几个概率分布(例如,固定轨迹、有界轨迹和高斯)。由于d中概率测度的集中→∞ 极限,谱矩与块的概率测度无关(具有各向同性、光滑性和亚高斯尾的温和假设)。有效介质近似是具有有限秩的稀疏块结构随机系综的极限谱密度。拉普拉斯稀疏块结构系综具有类似的普适性类。使用随机正则图代替Erdös–Renyi图获得了相同的极限分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics Complexity
Journal of Physics Complexity Computer Science-Information Systems
CiteScore
4.30
自引率
11.10%
发文量
45
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信