{"title":"A novel PES-C/(GO-COOH/Ce) blended membrane for treating heavy-metal-ion wastewater","authors":"Jie Zhang, Baining Li, Hongdan Xue, Chunyan Zhang, Jinjing Li, Shujing Zhou","doi":"10.1177/09540083221130936","DOIUrl":null,"url":null,"abstract":"A GO-COOH/Ce complex was introduced into a phenolphthalide polythersulfone (PES-C) matrix to prepare a PES-C/(GO-COOH/Ce) blended membrane by nonsolvent-induced phase transformation (NIPS). FT-IR and EDS analysis confirmed that the GO-COOH/Ce complex was successfully incorporated into the PES-C matrix. SEM showed that the blended membrane possessed an asymmetric structure with finger-like pores. The best comprehensive performance was obtained for a PES-C/(GO-COOH/Ce) blended membrane prepared using 0.1 wt.% of the GO-COOH/Ce complex in the casting liquid. The specific results for the blended membrane were as follows: the fluxes of pure water and 0.1 g/L lead nitrate solution were 272 L/m2·h and 214 L/m2·h, respectively; the rejection of bovine serum albumin (BSA) was 99.4%; the rejection of lead ions was 96.2%; the moisture content was 10.9%; the contact angle was 67.1°; the Young's modulus was 35.7 MPa; and the flux recovery ratio was 1.5 times higher than that of the pure PES-C membrane. The antibacterial-zone diameters of the PES-C/(GO-COOH/Ce) blended membrane used against Escherichia coli and Staphylococcus aureus were 2.50 cm and 2.88 cm, respectively. A catalytic cleaning test showed a flux recovery ratio of 63% after washing the PES-C/(GO-COOH/Ce) blended membrane with a 0.2 g/L acetic acid solution for 0.5 h.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":"35 1","pages":"295 - 309"},"PeriodicalIF":1.8000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Performance Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09540083221130936","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A GO-COOH/Ce complex was introduced into a phenolphthalide polythersulfone (PES-C) matrix to prepare a PES-C/(GO-COOH/Ce) blended membrane by nonsolvent-induced phase transformation (NIPS). FT-IR and EDS analysis confirmed that the GO-COOH/Ce complex was successfully incorporated into the PES-C matrix. SEM showed that the blended membrane possessed an asymmetric structure with finger-like pores. The best comprehensive performance was obtained for a PES-C/(GO-COOH/Ce) blended membrane prepared using 0.1 wt.% of the GO-COOH/Ce complex in the casting liquid. The specific results for the blended membrane were as follows: the fluxes of pure water and 0.1 g/L lead nitrate solution were 272 L/m2·h and 214 L/m2·h, respectively; the rejection of bovine serum albumin (BSA) was 99.4%; the rejection of lead ions was 96.2%; the moisture content was 10.9%; the contact angle was 67.1°; the Young's modulus was 35.7 MPa; and the flux recovery ratio was 1.5 times higher than that of the pure PES-C membrane. The antibacterial-zone diameters of the PES-C/(GO-COOH/Ce) blended membrane used against Escherichia coli and Staphylococcus aureus were 2.50 cm and 2.88 cm, respectively. A catalytic cleaning test showed a flux recovery ratio of 63% after washing the PES-C/(GO-COOH/Ce) blended membrane with a 0.2 g/L acetic acid solution for 0.5 h.
期刊介绍:
Health Services Management Research (HSMR) is an authoritative international peer-reviewed journal which publishes theoretically and empirically rigorous research on questions of enduring interest to health-care organizations and systems throughout the world. Examining the real issues confronting health services management, it provides an independent view and cutting edge evidence-based research to guide policy-making and management decision-making. HSMR aims to be a forum serving an international community of academics and researchers on the one hand and healthcare managers, executives, policymakers and clinicians and all health professionals on the other. HSMR wants to make a substantial contribution to both research and managerial practice, with particular emphasis placed on publishing studies which offer actionable findings and on promoting knowledge mobilisation toward theoretical advances. All papers are expected to be of interest and relevance to an international audience. HSMR aims at enhance communication between academics and practitioners concerned with developing, implementing, and analysing health management issues, reforms and innovations primarily in European health systems and in all countries with developed health systems. Papers can report research undertaken in a single country, but they need to locate and explain their findings in an international context, and in international literature.