T. Tuswan, D. Sari, T. Muttaqie, A. Prabowo, M. Soetardjo, Totok Tri Putrastyo Murwantono, Ridwan Utina, Yuniati Yuniati
{"title":"Representative application of LNG-fuelled ships: a critical overview on potential ghg emission reductions and economic benefits","authors":"T. Tuswan, D. Sari, T. Muttaqie, A. Prabowo, M. Soetardjo, Totok Tri Putrastyo Murwantono, Ridwan Utina, Yuniati Yuniati","doi":"10.21278/brod74104","DOIUrl":null,"url":null,"abstract":"The shipping industry is the primary and most significant mode of international cargo transportation. The ship must comply with strict rules regarding reducing greenhouse gas (GHG) emissions as a dominant transportation mode. Liquified Natural Gas (LNG) is the primary alternative fuel option for several shipping companies. In essence, many studies recommend LNG as a transitional and alternative fuel because its emission characteristics are cleaner than other fossil fuels. Several previous investigations have been carried out to develop an action plan for integrating the use of LNG as a ship fuel. However, there have been few discussions on the estimation of GHG emission reduction and the economic efficiency of a representative LNG-fuelled ship. The recent progress on LNG-fuelled ships is systematically reviewed to summarize the pathways and highlight the core technological concepts, technical issues, current LNG-fuelled ship applications, and future outlooks regarding integrating LNG energy resources into ship power systems to measure GHG emission reductions and cost savings estimations. The report will discuss the current development in the maritime sector and the effects of the macroeconomic scale. The result reveals that future research on ship-based LNG energy systems will probably concentrate on integrating new energy source generating strategies with existing ship power systems to improve energy efficiency. Several potential research areas for future outlook were also discussed to anticipate future challenges.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod74104","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 1
Abstract
The shipping industry is the primary and most significant mode of international cargo transportation. The ship must comply with strict rules regarding reducing greenhouse gas (GHG) emissions as a dominant transportation mode. Liquified Natural Gas (LNG) is the primary alternative fuel option for several shipping companies. In essence, many studies recommend LNG as a transitional and alternative fuel because its emission characteristics are cleaner than other fossil fuels. Several previous investigations have been carried out to develop an action plan for integrating the use of LNG as a ship fuel. However, there have been few discussions on the estimation of GHG emission reduction and the economic efficiency of a representative LNG-fuelled ship. The recent progress on LNG-fuelled ships is systematically reviewed to summarize the pathways and highlight the core technological concepts, technical issues, current LNG-fuelled ship applications, and future outlooks regarding integrating LNG energy resources into ship power systems to measure GHG emission reductions and cost savings estimations. The report will discuss the current development in the maritime sector and the effects of the macroeconomic scale. The result reveals that future research on ship-based LNG energy systems will probably concentrate on integrating new energy source generating strategies with existing ship power systems to improve energy efficiency. Several potential research areas for future outlook were also discussed to anticipate future challenges.
期刊介绍:
The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.