{"title":"Symmetry and nonsymmetry of minimal action sign-changing solutions for the Choquard system","authors":"Jianqing Chen, Qian Zhang","doi":"10.1515/anona-2022-0286","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we consider the following Choquard system in R N N ≥ 1 {{\\mathbb{R}}}^{N}N\\ge 1 − Δ u + u = 2 p p + q ( I α ∗ ∣ v ∣ q ) ∣ u ∣ p − 2 u , − Δ v + v = 2 q p + q ( I α ∗ ∣ u ∣ p ) ∣ v ∣ q − 2 v , u ( x ) → 0 , v ( x ) → 0 as ∣ x ∣ → ∞ , \\left\\{\\begin{array}{l}-\\Delta u+u=\\frac{2p}{p+q}({I}_{\\alpha }\\ast | v{| }^{q})| u{| }^{p-2}u,\\\\ -\\Delta v+v=\\frac{2q}{p+q}({I}_{\\alpha }\\ast | u{| }^{p})| v{| }^{q-2}v,\\\\ u\\left(x)\\to 0,v\\left(x)\\to 0\\hspace{1em}\\hspace{0.1em}\\text{as}\\hspace{0.1em}\\hspace{0.33em}| x| \\to \\infty ,\\end{array}\\right. where N + α N < p , q < N + α N − 2 \\frac{N+\\alpha }{N}\\lt p,q\\lt \\frac{N+\\alpha }{N-2} , 2 ∗ α {2}_{\\ast }^{\\alpha } denotes N + α N − 2 \\frac{N+\\alpha }{N-2} if N ≥ 3 N\\ge 3 and 2 ∗ α ≔ ∞ {2}_{\\ast }^{\\alpha }:= \\infty if N = 1 , 2 N=1,2 , I α {I}_{\\alpha } is a Riesz potential. By analyzing the asymptotic behavior of Riesz potential energy, we prove that minimal action sign-changing solutions have an odd symmetry with respect to the a hyperplane when α \\alpha is either close to 0 or close to N N . Our results can be regarded as a generalization of the results by Ruiz et al.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0286","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this article, we consider the following Choquard system in R N N ≥ 1 {{\mathbb{R}}}^{N}N\ge 1 − Δ u + u = 2 p p + q ( I α ∗ ∣ v ∣ q ) ∣ u ∣ p − 2 u , − Δ v + v = 2 q p + q ( I α ∗ ∣ u ∣ p ) ∣ v ∣ q − 2 v , u ( x ) → 0 , v ( x ) → 0 as ∣ x ∣ → ∞ , \left\{\begin{array}{l}-\Delta u+u=\frac{2p}{p+q}({I}_{\alpha }\ast | v{| }^{q})| u{| }^{p-2}u,\\ -\Delta v+v=\frac{2q}{p+q}({I}_{\alpha }\ast | u{| }^{p})| v{| }^{q-2}v,\\ u\left(x)\to 0,v\left(x)\to 0\hspace{1em}\hspace{0.1em}\text{as}\hspace{0.1em}\hspace{0.33em}| x| \to \infty ,\end{array}\right. where N + α N < p , q < N + α N − 2 \frac{N+\alpha }{N}\lt p,q\lt \frac{N+\alpha }{N-2} , 2 ∗ α {2}_{\ast }^{\alpha } denotes N + α N − 2 \frac{N+\alpha }{N-2} if N ≥ 3 N\ge 3 and 2 ∗ α ≔ ∞ {2}_{\ast }^{\alpha }:= \infty if N = 1 , 2 N=1,2 , I α {I}_{\alpha } is a Riesz potential. By analyzing the asymptotic behavior of Riesz potential energy, we prove that minimal action sign-changing solutions have an odd symmetry with respect to the a hyperplane when α \alpha is either close to 0 or close to N N . Our results can be regarded as a generalization of the results by Ruiz et al.