F. El-Sousy, M. Aly, Mohammed H. Alqahtani, Ali S. Aljumah, Sulaiman Z. Almutairi, Emad A. Mohamed
{"title":"New Cascaded 1+PII2D/FOPID Load Frequency Controller for Modern Power Grids including Superconducting Magnetic Energy Storage and Renewable Energy","authors":"F. El-Sousy, M. Aly, Mohammed H. Alqahtani, Ali S. Aljumah, Sulaiman Z. Almutairi, Emad A. Mohamed","doi":"10.3390/fractalfract7090672","DOIUrl":null,"url":null,"abstract":"Having continuous decrease in inertia and being sensitive to load/generation variation are considered crucial challenging problems for modern power grids. The main cause of these problems is the increased penetration capacities of renewables. An unbalanced load with generation power largely affects grids’ frequency and voltage profiles. Load frequency control (LFC) mechanisms are extensively presented to solve these problems. In the literature, LFC methods are still lacking in dealing with system uncertainty, parameter variation, structure changes, and/or disturbance rejection. Therefore, this paper proposes an improved LFC methodology using the hybrid one plus proportional integral double-integral derivative (1+PII2D) cascaded with fractional order proportional-integral-derivative (FOPID), namely, the proposed 1+PII2D/FOPID controller. The contribution of superconducting magnetic energy storage devices (SMES) is considered in the proposed design, also considering hybrid high-voltage DC and AC transmission lines (hybrid HVDC/HVAC). An optimized design of proposed 1+PII2D/FOPID controller is proposed using a new application of the recently presented powerful artificial rabbits optimizers (ARO) algorithm. Various performance comparisons, system changes, parameter uncertainties, and load/generation profiles and changes are considered in the proposed case study. The results proved superior regulation of frequency using proposed 1+PII2D/FOPID control and the ARO optimum parameters.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract7090672","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
Having continuous decrease in inertia and being sensitive to load/generation variation are considered crucial challenging problems for modern power grids. The main cause of these problems is the increased penetration capacities of renewables. An unbalanced load with generation power largely affects grids’ frequency and voltage profiles. Load frequency control (LFC) mechanisms are extensively presented to solve these problems. In the literature, LFC methods are still lacking in dealing with system uncertainty, parameter variation, structure changes, and/or disturbance rejection. Therefore, this paper proposes an improved LFC methodology using the hybrid one plus proportional integral double-integral derivative (1+PII2D) cascaded with fractional order proportional-integral-derivative (FOPID), namely, the proposed 1+PII2D/FOPID controller. The contribution of superconducting magnetic energy storage devices (SMES) is considered in the proposed design, also considering hybrid high-voltage DC and AC transmission lines (hybrid HVDC/HVAC). An optimized design of proposed 1+PII2D/FOPID controller is proposed using a new application of the recently presented powerful artificial rabbits optimizers (ARO) algorithm. Various performance comparisons, system changes, parameter uncertainties, and load/generation profiles and changes are considered in the proposed case study. The results proved superior regulation of frequency using proposed 1+PII2D/FOPID control and the ARO optimum parameters.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.