Uncolorable Brunnian Links are Linked

Q4 Mathematics
L. Kauffman, Devika Prasad, Claudia J. Zhu
{"title":"Uncolorable Brunnian Links are Linked","authors":"L. Kauffman, Devika Prasad, Claudia J. Zhu","doi":"10.1080/0025570X.2022.2136462","DOIUrl":null,"url":null,"abstract":"Summary The topology of knots and links can be studied by examining colorings of their diagrams. We explain how to detect knots and links using the method of Fox tricoloring, and we give a new and elementary proof that an infinite family of Brunnian links are each linked. Our proof is based on the remarkable fact (which we prove) that if a link diagram cannot be tricolored then it must be linked. Our paper introduces readers to the Fox coloring generalization of tricoloring and the further algebraic generalization, called a quandle by David Joyce.","PeriodicalId":18344,"journal":{"name":"Mathematics Magazine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0025570X.2022.2136462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Summary The topology of knots and links can be studied by examining colorings of their diagrams. We explain how to detect knots and links using the method of Fox tricoloring, and we give a new and elementary proof that an infinite family of Brunnian links are each linked. Our proof is based on the remarkable fact (which we prove) that if a link diagram cannot be tricolored then it must be linked. Our paper introduces readers to the Fox coloring generalization of tricoloring and the further algebraic generalization, called a quandle by David Joyce.
无法着色的Brunnian链接已链接
结和链路的拓扑结构可以通过检查其图的颜色来研究。我们解释了如何用Fox三色法来检测结点和连杆,并给出了一个新的初等证明,证明了无限一族的Brunnian连杆都是连杆的。我们的证明是基于一个显著的事实(我们证明了),如果一个链接图不能被三色,那么它一定是链接的。本文向读者介绍了三着色的Fox着色推广和David Joyce进一步的代数推广,即quandle。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics Magazine
Mathematics Magazine Mathematics-Mathematics (all)
CiteScore
0.20
自引率
0.00%
发文量
68
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信