Adhora Tahsin, Salman Siddique, W. Ashraf, Melanie L. Sattler
{"title":"Assessment of the durability and environmental impact of seawater-activated portlandite-calcined clay binder","authors":"Adhora Tahsin, Salman Siddique, W. Ashraf, Melanie L. Sattler","doi":"10.1080/21650373.2023.2243480","DOIUrl":null,"url":null,"abstract":"This study investigated the performance of seawater-cured calcined clay-portlandite binder as a potential alternative to ordinary portland cement (OPC) for marine concrete applications. The samples for the investigation were prepared by mixing calcined kaolinite and bentonite clays in different ratios with portlandite. Seawater served as both the mixing and curing agent while acting as an activator due to its chloride and sulfate ion contents. The process involved three sequential steps: evaluating the changes in the mechanical performances, assessing the microstructural features, and estimating the environmental impacts. The results showed that the bound and total chloride content was significantly higher in the calcined clay mixes than in the OPC. The higher kaolinite enhanced the mechanical properties, and the strength-providing phases were Friedel’s salt, C-A-S-H, ettringite, and zeolites. It was concluded that this novel binder has the potential to reduce global warming by 85–90% more than OPC.","PeriodicalId":48521,"journal":{"name":"Journal of Sustainable Cement-Based Materials","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Cement-Based Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21650373.2023.2243480","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the performance of seawater-cured calcined clay-portlandite binder as a potential alternative to ordinary portland cement (OPC) for marine concrete applications. The samples for the investigation were prepared by mixing calcined kaolinite and bentonite clays in different ratios with portlandite. Seawater served as both the mixing and curing agent while acting as an activator due to its chloride and sulfate ion contents. The process involved three sequential steps: evaluating the changes in the mechanical performances, assessing the microstructural features, and estimating the environmental impacts. The results showed that the bound and total chloride content was significantly higher in the calcined clay mixes than in the OPC. The higher kaolinite enhanced the mechanical properties, and the strength-providing phases were Friedel’s salt, C-A-S-H, ettringite, and zeolites. It was concluded that this novel binder has the potential to reduce global warming by 85–90% more than OPC.
期刊介绍:
The Journal of Sustainable Cement-Based Materials aims to publish theoretical and applied researches on materials, products and structures that incorporate cement. The journal is a forum for discussion of research on manufacture, hydration and performance of cement-based materials; novel experimental techniques; the latest analytical and modelling methods; the examination and the diagnosis of real cement and concrete structures; and the potential for improved cement-based materials. The journal welcomes original research papers, major reviews, rapid communications and selected conference papers. The Journal of Sustainable Cement-Based Materials covers a wide range of topics within its subject category, including but are not limited to: • raw materials and manufacture of cement • mixing, rheology and hydration • admixtures • structural characteristics and performance of cement-based materials • characterisation techniques and modeling • use of fibre in cement based-materials • degradation and repair of cement-based materials • novel testing techniques and applications • waste management