Pose optimization in robotic milling based on surface location error

IF 2.4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING
Teng-fei Hou, Yang Lei, Ye Ding
{"title":"Pose optimization in robotic milling based on surface location error","authors":"Teng-fei Hou, Yang Lei, Ye Ding","doi":"10.1115/1.4057055","DOIUrl":null,"url":null,"abstract":"\n Industrial robots have become a suitable alternative to machine tools due to their great flexibility, low cost, and large working space. However, the deformation and vibration caused by the cutting forces during machining result in poor machining accuracy and surface quality. In order to improve the machining performance of the robot, this paper proposes a posture optimization method for robotic milling with the redundant degree of freedom of the industrial robot. First, modal tests are conducted in the robotic workspace to obtain the parameters of the structural dynamics of the robotic milling system. Then, considering the dynamics model of the system, the optimization model based on surface location error (SLE) is proposed to obtain the optimal robotic posture. Finally, a series of experiments illustrate that pose optimization based on SLE can improve the machining accuracy and surface machining quality.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4057055","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1

Abstract

Industrial robots have become a suitable alternative to machine tools due to their great flexibility, low cost, and large working space. However, the deformation and vibration caused by the cutting forces during machining result in poor machining accuracy and surface quality. In order to improve the machining performance of the robot, this paper proposes a posture optimization method for robotic milling with the redundant degree of freedom of the industrial robot. First, modal tests are conducted in the robotic workspace to obtain the parameters of the structural dynamics of the robotic milling system. Then, considering the dynamics model of the system, the optimization model based on surface location error (SLE) is proposed to obtain the optimal robotic posture. Finally, a series of experiments illustrate that pose optimization based on SLE can improve the machining accuracy and surface machining quality.
基于曲面定位误差的铣削机器人位姿优化
工业机器人具有灵活性强、成本低、工作空间大等优点,已成为机床的理想替代品。然而,在加工过程中,由于切削力引起的变形和振动导致加工精度和表面质量差。为了提高机器人的加工性能,提出了一种考虑工业机器人冗余自由度的机器人铣削姿态优化方法。首先,在机器人工作空间进行模态试验,得到机器人铣削系统的结构动力学参数。然后,考虑系统的动力学模型,提出了基于表面定位误差(SLE)的优化模型,以获得最优机器人姿态。最后,通过一系列的实验表明,基于SLE的位姿优化可以提高加工精度和表面加工质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
20.00%
发文量
126
审稿时长
12 months
期刊介绍: Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信