Surface and Constriction Engineering of Nanoparticle Based Structures Towards Ultra-Low Thermal Conductivity as Prospective Thermoelectric Materials

IF 2.7 3区 工程技术 Q2 ENGINEERING, MECHANICAL
P. Henadeera, N. Samaraweera, Chathura Ranasinghe, A. Wijewardane
{"title":"Surface and Constriction Engineering of Nanoparticle Based Structures Towards Ultra-Low Thermal Conductivity as Prospective Thermoelectric Materials","authors":"P. Henadeera, N. Samaraweera, Chathura Ranasinghe, A. Wijewardane","doi":"10.1080/15567265.2023.2180458","DOIUrl":null,"url":null,"abstract":"ABSTRACT The superior thermal insulating properties of nanostructured semiconductor materials over their bulk counterparts, make them promising candidates for Thermo-Electric (TE) applications. In this study, the superior thermal insulating properties of a new class of one-dimensional nanostructures made by sintering linearly placed nanoparticles, called Nano Particle Chains (NPC) are analyzed for a variety of surface and constriction modifications. The NPC structure which has been shown to be capable of achieving a one-order reduction in thermal conductivity over comparably sized nanowires is revealed to house a new phonon suppression mechanism in addition to commonly discussed phonon boundary scattering and quantum confinement effects. In the current work, this quantum confinement based thermal conductivity reduction mechanism is revealed to be a variation in the phonon Density of States (DoS) along the longitudinal/transport direction of the structure due to the presence of the nanoscale constrictions. Subsequently, the phonons are forced to change the distribution of modes while traveling across the structure, thus resulting in lower thermal conductivity. Additionally, the effects of common phonon suppression techniques such as superlattice, shell alloy, and surface atom removal, used in semiconductor nanostructures are also evaluated on NPC configurations to fully determine the phonon transport characteristics within different classes of the material.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"27 1","pages":"25 - 41"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2023.2180458","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT The superior thermal insulating properties of nanostructured semiconductor materials over their bulk counterparts, make them promising candidates for Thermo-Electric (TE) applications. In this study, the superior thermal insulating properties of a new class of one-dimensional nanostructures made by sintering linearly placed nanoparticles, called Nano Particle Chains (NPC) are analyzed for a variety of surface and constriction modifications. The NPC structure which has been shown to be capable of achieving a one-order reduction in thermal conductivity over comparably sized nanowires is revealed to house a new phonon suppression mechanism in addition to commonly discussed phonon boundary scattering and quantum confinement effects. In the current work, this quantum confinement based thermal conductivity reduction mechanism is revealed to be a variation in the phonon Density of States (DoS) along the longitudinal/transport direction of the structure due to the presence of the nanoscale constrictions. Subsequently, the phonons are forced to change the distribution of modes while traveling across the structure, thus resulting in lower thermal conductivity. Additionally, the effects of common phonon suppression techniques such as superlattice, shell alloy, and surface atom removal, used in semiconductor nanostructures are also evaluated on NPC configurations to fully determine the phonon transport characteristics within different classes of the material.
面向超低导热率的纳米颗粒结构的表面和收缩工程
纳米结构半导体材料优越的隔热性能使其成为热电(TE)应用的有希望的候选者。在这项研究中,通过烧结线性放置的纳米颗粒制成的一类新型一维纳米结构,称为纳米颗粒链(NPC),分析了各种表面和收缩修饰的优越隔热性能。除了常见的声子边界散射和量子约束效应外,NPC结构还具有新的声子抑制机制,该结构已被证明能够在相当尺寸的纳米线上实现一阶导热性降低。在目前的工作中,这种基于量子限制的导热性降低机制揭示了由于纳米尺度收缩的存在,声子态密度(DoS)沿着结构的纵向/输运方向变化。随后,声子在穿越结构时被迫改变模式分布,从而导致导热系数降低。此外,我们还评估了半导体纳米结构中常用的声子抑制技术(如超晶格、壳合金和表面原子去除)对NPC构型的影响,以充分确定不同类别材料中的声子输运特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale and Microscale Thermophysical Engineering
Nanoscale and Microscale Thermophysical Engineering 工程技术-材料科学:表征与测试
CiteScore
5.90
自引率
2.40%
发文量
12
审稿时长
3.3 months
期刊介绍: Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation. The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as: transport and interactions of electrons, phonons, photons, and spins in solids, interfacial energy transport and phase change processes, microscale and nanoscale fluid and mass transport and chemical reaction, molecular-level energy transport, storage, conversion, reaction, and phase transition, near field thermal radiation and plasmonic effects, ultrafast and high spatial resolution measurements, multi length and time scale modeling and computations, processing of nanostructured materials, including composites, micro and nanoscale manufacturing, energy conversion and storage devices and systems, thermal management devices and systems, microfluidic and nanofluidic devices and systems, molecular analysis devices and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信