{"title":"Deformation monitoring using passive Beidou B3I signal-based radar: a proof of concept experimental demonstration","authors":"Zhuxian Zhang, Yu Zheng, Linhua Zheng, Peidong Zhu, Peng Wu","doi":"10.1007/s40328-022-00395-3","DOIUrl":null,"url":null,"abstract":"<div><p>China’s BeiDou navigation system has been completed and is currently in operation. As the newest constellation, BD-3 is composed of 30 satellite configurations. The application of BD-3 has improved rapidly, however, using the BD-3 signal as a signal resource in the global navigation satellite system (GNSS) passive radar domain to monitor deformation has not been proven to be feasible. The authors of his paper designed a BD-3 passive radar model and carried out a proof-of-concept experimental demonstration for deformation monitoring. As a result, a method based on the B3I signal as a signal resource for GNSS radar (GNSS-R) deformation monitoring is proven to be feasible. The experimental scenarios include laboratory simulation and proof of concept field displacement deformation. The test error reaches a value of 0.023 m for a simulation scenario, 0.0435 m for a field scene of deformation based on a target translation measurement, and 0.1011 m for a field scene of deformation based on a target rotation measurement.</p></div>","PeriodicalId":48965,"journal":{"name":"Acta Geodaetica et Geophysica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geodaetica et Geophysica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s40328-022-00395-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
China’s BeiDou navigation system has been completed and is currently in operation. As the newest constellation, BD-3 is composed of 30 satellite configurations. The application of BD-3 has improved rapidly, however, using the BD-3 signal as a signal resource in the global navigation satellite system (GNSS) passive radar domain to monitor deformation has not been proven to be feasible. The authors of his paper designed a BD-3 passive radar model and carried out a proof-of-concept experimental demonstration for deformation monitoring. As a result, a method based on the B3I signal as a signal resource for GNSS radar (GNSS-R) deformation monitoring is proven to be feasible. The experimental scenarios include laboratory simulation and proof of concept field displacement deformation. The test error reaches a value of 0.023 m for a simulation scenario, 0.0435 m for a field scene of deformation based on a target translation measurement, and 0.1011 m for a field scene of deformation based on a target rotation measurement.
期刊介绍:
The journal publishes original research papers in the field of geodesy and geophysics under headings: aeronomy and space physics, electromagnetic studies, geodesy and gravimetry, geodynamics, geomathematics, rock physics, seismology, solid earth physics, history. Papers dealing with problems of the Carpathian region and its surroundings are preferred. Similarly, papers on topics traditionally covered by Hungarian geodesists and geophysicists (e.g. robust estimations, geoid, EM properties of the Earth’s crust, geomagnetic pulsations and seismological risk) are especially welcome.