Asymptotic distribution of one-component partial least squares regression estimators in high dimensions

Pub Date : 2022-12-23 DOI:10.1002/cjs.11755
Jerónimo Basa, R. Dennis Cook, Liliana Forzani, Miguel Marcos
{"title":"Asymptotic distribution of one-component partial least squares regression estimators in high dimensions","authors":"Jerónimo Basa,&nbsp;R. Dennis Cook,&nbsp;Liliana Forzani,&nbsp;Miguel Marcos","doi":"10.1002/cjs.11755","DOIUrl":null,"url":null,"abstract":"<p>In a one-component partial least squares fit of a linear regression model, we find the asymptotic normal distribution, as the sample size and number of predictors approach infinity, of a user-selected univariate linear combination of the coefficient estimator and give corresponding asymptotic confidence and prediction intervals. Simulation studies and an analysis of a dopamine dataset are used to support our theoretical asymptotic results and their practical application.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a one-component partial least squares fit of a linear regression model, we find the asymptotic normal distribution, as the sample size and number of predictors approach infinity, of a user-selected univariate linear combination of the coefficient estimator and give corresponding asymptotic confidence and prediction intervals. Simulation studies and an analysis of a dopamine dataset are used to support our theoretical asymptotic results and their practical application.

分享
查看原文
高维单分量偏最小二乘回归估计量的渐近分布
:在线性回归模型的单分量偏最小二乘法中,随着样本量和预测因子数量的增加,我们确定了用户选择的系数估计器的单变量线性组合的渐近正态分布,并给出了相应的渐近置信度和预测区间。模拟研究和多巴胺数据集的分析用于支持我们的理论渐近结果及其实际应用。《加拿大统计杂志》xx:1-25;20??©20??加拿大统计学会
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信