Teng Fei, D. Phong, Sebastien Picard, Xiangwen Zhang
{"title":"Geometric flows for the Type IIA string","authors":"Teng Fei, D. Phong, Sebastien Picard, Xiangwen Zhang","doi":"10.4310/cjm.2021.v9.n3.a3","DOIUrl":null,"url":null,"abstract":"A geometric flow on $6$-dimensional symplectic manifolds is introduced which is motivated by supersymmetric compactifications of the Type IIA string. The underlying structure turns out to be SU(3) holonomy, but with respect to the projected Levi-Civita connection of an almost-Hermitian structure. The short-time existence is established, and new identities for the Nijenhuis tensor are found which are crucial for Shi-type estimates. The integrable case can be completely solved, giving an alternative proof of Yau's theorem on Ricci-flat K\\\"ahler metrics. In the non-integrable case, models are worked out which suggest that the flow should lead to optimal almost-complex structures compatible with the given symplectic form.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2021.v9.n3.a3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 18
Abstract
A geometric flow on $6$-dimensional symplectic manifolds is introduced which is motivated by supersymmetric compactifications of the Type IIA string. The underlying structure turns out to be SU(3) holonomy, but with respect to the projected Levi-Civita connection of an almost-Hermitian structure. The short-time existence is established, and new identities for the Nijenhuis tensor are found which are crucial for Shi-type estimates. The integrable case can be completely solved, giving an alternative proof of Yau's theorem on Ricci-flat K\"ahler metrics. In the non-integrable case, models are worked out which suggest that the flow should lead to optimal almost-complex structures compatible with the given symplectic form.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.