{"title":"Sticky particle Cucker–Smale dynamics and the entropic selection principle for the 1D Euler-alignment system","authors":"T. Leslie, Changhui Tan","doi":"10.1080/03605302.2023.2202720","DOIUrl":null,"url":null,"abstract":"Abstract We develop a global wellposedness theory for weak solutions to the 1D Euler-alignment system with measure-valued density, bounded velocity, and locally integrable communication protocol. A satisfactory understanding of the low-regularity theory is an issue of pressing interest, as smooth solutions may lose regularity in finite time. However, no such theory currently exists except for a very special class of alignment interactions. We show that the dynamics of the 1D Euler-alignment system can be effectively described by a nonlocal scalar balance law, the entropy conditions of which serves as an entropic selection principle that determines a unique weak solution of the Euler-alignment system. Moreover, the distinguished weak solution of the system can be approximated by the sticky particle Cucker–Smale dynamics. Our approach is inspired by the work of Brenier and Grenier on the pressureless Euler equations.","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":"48 1","pages":"753 - 791"},"PeriodicalIF":2.1000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2023.2202720","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract We develop a global wellposedness theory for weak solutions to the 1D Euler-alignment system with measure-valued density, bounded velocity, and locally integrable communication protocol. A satisfactory understanding of the low-regularity theory is an issue of pressing interest, as smooth solutions may lose regularity in finite time. However, no such theory currently exists except for a very special class of alignment interactions. We show that the dynamics of the 1D Euler-alignment system can be effectively described by a nonlocal scalar balance law, the entropy conditions of which serves as an entropic selection principle that determines a unique weak solution of the Euler-alignment system. Moreover, the distinguished weak solution of the system can be approximated by the sticky particle Cucker–Smale dynamics. Our approach is inspired by the work of Brenier and Grenier on the pressureless Euler equations.
期刊介绍:
This journal aims to publish high quality papers concerning any theoretical aspect of partial differential equations, as well as its applications to other areas of mathematics. Suitability of any paper is at the discretion of the editors. We seek to present the most significant advances in this central field to a wide readership which includes researchers and graduate students in mathematics and the more mathematical aspects of physics and engineering.