{"title":"Generalized partial linear varying multi-index coefficient model for gene-environment interactions","authors":"Xu Liu, Bin Gao, Yuehua Cui","doi":"10.1515/sagmb-2016-0045","DOIUrl":null,"url":null,"abstract":"Abstract Epidemiological studies have suggested the joint effect of simultaneous exposures to multiple environments on disease risk. However, how environmental mixtures as a whole jointly modify genetic effect on disease risk is still largely unknown. Given the importance of gene-environment (G×E) interactions on many complex diseases, rigorously assessing the interaction effect between genes and environmental mixtures as a whole could shed novel insights into the etiology of complex diseases. For this purpose, we propose a generalized partial linear varying multi-index coefficient model (GPLVMICM) to capture the genetic effect on disease risk modulated by multiple environments as a whole. GPLVMICM is semiparametric in nature which allows different index loading parameters in different index functions. We estimate the parametric parameters by a profile procedure, and the nonparametric index functions by a B-spline backfitted kernel method. Under some regularity conditions, the proposed parametric and nonparametric estimators are shown to be consistent and asymptotically normal. We propose a generalized likelihood ratio (GLR) test to rigorously assess the linearity of the interaction effect between multiple environments and a gene, while apply a parametric likelihood test to detect linear G×E interaction effect. The finite sample performance of the proposed method is examined through simulation studies and is further illustrated through a real data analysis.","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"16 1","pages":"59 - 74"},"PeriodicalIF":0.9000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2016-0045","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2016-0045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Epidemiological studies have suggested the joint effect of simultaneous exposures to multiple environments on disease risk. However, how environmental mixtures as a whole jointly modify genetic effect on disease risk is still largely unknown. Given the importance of gene-environment (G×E) interactions on many complex diseases, rigorously assessing the interaction effect between genes and environmental mixtures as a whole could shed novel insights into the etiology of complex diseases. For this purpose, we propose a generalized partial linear varying multi-index coefficient model (GPLVMICM) to capture the genetic effect on disease risk modulated by multiple environments as a whole. GPLVMICM is semiparametric in nature which allows different index loading parameters in different index functions. We estimate the parametric parameters by a profile procedure, and the nonparametric index functions by a B-spline backfitted kernel method. Under some regularity conditions, the proposed parametric and nonparametric estimators are shown to be consistent and asymptotically normal. We propose a generalized likelihood ratio (GLR) test to rigorously assess the linearity of the interaction effect between multiple environments and a gene, while apply a parametric likelihood test to detect linear G×E interaction effect. The finite sample performance of the proposed method is examined through simulation studies and is further illustrated through a real data analysis.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.