Generalized partial linear varying multi-index coefficient model for gene-environment interactions

IF 0.9 4区 数学 Q3 Mathematics
Xu Liu, Bin Gao, Yuehua Cui
{"title":"Generalized partial linear varying multi-index coefficient model for gene-environment interactions","authors":"Xu Liu, Bin Gao, Yuehua Cui","doi":"10.1515/sagmb-2016-0045","DOIUrl":null,"url":null,"abstract":"Abstract Epidemiological studies have suggested the joint effect of simultaneous exposures to multiple environments on disease risk. However, how environmental mixtures as a whole jointly modify genetic effect on disease risk is still largely unknown. Given the importance of gene-environment (G×E) interactions on many complex diseases, rigorously assessing the interaction effect between genes and environmental mixtures as a whole could shed novel insights into the etiology of complex diseases. For this purpose, we propose a generalized partial linear varying multi-index coefficient model (GPLVMICM) to capture the genetic effect on disease risk modulated by multiple environments as a whole. GPLVMICM is semiparametric in nature which allows different index loading parameters in different index functions. We estimate the parametric parameters by a profile procedure, and the nonparametric index functions by a B-spline backfitted kernel method. Under some regularity conditions, the proposed parametric and nonparametric estimators are shown to be consistent and asymptotically normal. We propose a generalized likelihood ratio (GLR) test to rigorously assess the linearity of the interaction effect between multiple environments and a gene, while apply a parametric likelihood test to detect linear G×E interaction effect. The finite sample performance of the proposed method is examined through simulation studies and is further illustrated through a real data analysis.","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"16 1","pages":"59 - 74"},"PeriodicalIF":0.9000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2016-0045","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2016-0045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Epidemiological studies have suggested the joint effect of simultaneous exposures to multiple environments on disease risk. However, how environmental mixtures as a whole jointly modify genetic effect on disease risk is still largely unknown. Given the importance of gene-environment (G×E) interactions on many complex diseases, rigorously assessing the interaction effect between genes and environmental mixtures as a whole could shed novel insights into the etiology of complex diseases. For this purpose, we propose a generalized partial linear varying multi-index coefficient model (GPLVMICM) to capture the genetic effect on disease risk modulated by multiple environments as a whole. GPLVMICM is semiparametric in nature which allows different index loading parameters in different index functions. We estimate the parametric parameters by a profile procedure, and the nonparametric index functions by a B-spline backfitted kernel method. Under some regularity conditions, the proposed parametric and nonparametric estimators are shown to be consistent and asymptotically normal. We propose a generalized likelihood ratio (GLR) test to rigorously assess the linearity of the interaction effect between multiple environments and a gene, while apply a parametric likelihood test to detect linear G×E interaction effect. The finite sample performance of the proposed method is examined through simulation studies and is further illustrated through a real data analysis.
基因-环境相互作用的广义偏线性变多指标系数模型
摘要流行病学研究表明,同时暴露于多种环境对疾病风险的联合影响。然而,环境混合物作为一个整体如何共同改变遗传对疾病风险的影响在很大程度上仍然未知。鉴于基因-环境(G×E)相互作用对许多复杂疾病的重要性,严格评估基因和环境混合物之间的相互作用效应可以为复杂疾病的病因提供新的见解。为此,我们提出了一个广义偏线性变多指标系数模型(GPLVMICM),以捕捉遗传对多个环境整体调节的疾病风险的影响。GPLVMMCM本质上是半参数的,它允许在不同的索引函数中使用不同的索引加载参数。我们用轮廓法估计参数,用B样条反推核方法估计非参数指标函数。在一定的正则性条件下,证明了所提出的参数和非参数估计是一致的和渐近正态的。我们提出了一种广义似然比(GLR)检验来严格评估多个环境和基因之间相互作用效应的线性,同时应用参数似然检验来检测线性G×E相互作用效应。通过仿真研究检验了该方法的有限样本性能,并通过实际数据分析进一步说明了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信