Font Comparison System Based on Multiple Similarity Metrics

IF 0.4 Q4 ENGINEERING, INDUSTRIAL
Shota Takizawa, Taisei Hoshi, Qiu Chen
{"title":"Font Comparison System Based on Multiple Similarity Metrics","authors":"Shota Takizawa, Taisei Hoshi, Qiu Chen","doi":"10.5057/ijae.ijae-d-19-00012","DOIUrl":null,"url":null,"abstract":": Digital fonts are widely used in various fields such as documents, webpages, movie subtitles, etc., thus, how to select the best font for the content is an important issue. For the same font, the similarity calculated using different metrics is different. In this paper, we propose a font comparison system that considers different similarities by sorting the similarity of each font. For measuring similarity, we use MSE, PSNR, SSIM, and HaarPSI for image quality assessment, as well as Euclidean distance and cosine similarity in t-SNE to reduce the number of dimensions. We evaluate how the correlation to the font order of each comparison method changes depending on the resolution of the image, the character type, and the comparison method.","PeriodicalId":41579,"journal":{"name":"International Journal of Affective Engineering","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Affective Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5057/ijae.ijae-d-19-00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

: Digital fonts are widely used in various fields such as documents, webpages, movie subtitles, etc., thus, how to select the best font for the content is an important issue. For the same font, the similarity calculated using different metrics is different. In this paper, we propose a font comparison system that considers different similarities by sorting the similarity of each font. For measuring similarity, we use MSE, PSNR, SSIM, and HaarPSI for image quality assessment, as well as Euclidean distance and cosine similarity in t-SNE to reduce the number of dimensions. We evaluate how the correlation to the font order of each comparison method changes depending on the resolution of the image, the character type, and the comparison method.
基于多相似度度量的字体比较系统
:数字字体广泛应用于文档、网页、电影字幕等各个领域,如何为内容选择最佳字体是一个重要的问题。对于相同的字体,使用不同的度量标准计算的相似度是不同的。在本文中,我们提出了一种考虑不同相似度的字体比较系统,通过对每种字体的相似度进行排序。为了测量相似度,我们使用MSE、PSNR、SSIM和HaarPSI来评估图像质量,并使用t-SNE中的欧几里得距离和余弦相似度来减少维数。我们评估了每种比较方法与字体顺序的相关性如何根据图像的分辨率、字符类型和比较方法而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信