Binormal and complex symmetric weighted composition operators on the Fock Space over $\mathbb{C}$

Q3 Mathematics
C. Santhoshkumar
{"title":"Binormal and complex symmetric weighted composition operators on the Fock Space over $\\mathbb{C}$","authors":"C. Santhoshkumar","doi":"10.30970/ms.59.1.106-112","DOIUrl":null,"url":null,"abstract":"In this paper, we give simple characterization of binormal weighted composition operators $C_{\\psi, \\phi}$ on the Fock space over $\\mathbb{C}$ where weight function is of the form $\\psi(\\zeta) = e^{\\langle \\zeta, c \\rangle}$ for some $c \\in \\mathbb{C}$. We derive conditions for $C_{\\phi}$ to be binormal such that $C^*_{\\phi}C_{\\phi}$ and $C^*_{\\phi} + C_{\\phi}$ commute. Finally we give some simple characterization of binormal weighted composition operator to be complex symmetric.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.59.1.106-112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we give simple characterization of binormal weighted composition operators $C_{\psi, \phi}$ on the Fock space over $\mathbb{C}$ where weight function is of the form $\psi(\zeta) = e^{\langle \zeta, c \rangle}$ for some $c \in \mathbb{C}$. We derive conditions for $C_{\phi}$ to be binormal such that $C^*_{\phi}C_{\phi}$ and $C^*_{\phi} + C_{\phi}$ commute. Finally we give some simple characterization of binormal weighted composition operator to be complex symmetric.
$\mathbb{C}上Fock空间上的二重和复对称加权复合算子$
本文给出了在$\mathbb{C}$上的Fock空间上的二正规加权复合算子$C_{\psi, \phi}$的简单刻画,其中对于某些$c \in \mathbb{C}$,权函数的形式为$\psi(\zeta) = e^{\langle \zeta, c \rangle}$。我们推导出$C_{\phi}$是异正规的条件,使得$C^*_{\phi}C_{\phi}$和$C^*_{\phi} + C_{\phi}$可以交换。最后给出了二正规加权复合算子复对称的一些简单刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信