{"title":"Hypertranscendence and linear difference equations","authors":"B. Adamczewski, T. Dreyfus, C. Hardouin","doi":"10.1090/jams/960","DOIUrl":null,"url":null,"abstract":"<p>After Hölder proved his classical theorem about the Gamma function, there has been a whole bunch of results showing that solutions to linear difference equations tend to be hypertranscendental (<italic>i.e.</italic>, they cannot be solution to an algebraic differential equation). In this paper, we obtain the first complete results for solutions to general linear difference equations associated with the shift operator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x right-arrow from bar x plus h\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">↦<!-- ↦ --></mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>h</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">x\\mapsto x+h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h element-of double-struck upper C Superscript asterisk\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>h</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">h\\in \\mathbb {C}^*</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>), the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\">\n <mml:semantics>\n <mml:mi>q</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-difference operator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x right-arrow from bar q x\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">↦<!-- ↦ --></mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mi>x</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">x\\mapsto qx</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q element-of double-struck upper C Superscript asterisk\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>q</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">q\\in \\mathbb {C}^*</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> not a root of unity), and the Mahler operator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x right-arrow from bar x Superscript p\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">↦<!-- ↦ --></mml:mo>\n <mml:msup>\n <mml:mi>x</mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">x\\mapsto x^p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than-or-equal-to 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p\\geq 2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> integer). The only restriction is that we constrain our solutions to be expressed as (possibly ramified) Laurent series in the variable <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x\">\n <mml:semantics>\n <mml:mi>x</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">x</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with complex coefficients (or in the variable <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 slash x\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>x</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">1/x</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in some special case associated with the shift operator). Our proof is based on the parametrized difference Galois theory initiated by Hardouin and Singer. We also deduce from our main result a general statement about algebraic independence of values of Mahler functions and their derivatives at algebraic points.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2019-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/960","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18
Abstract
After Hölder proved his classical theorem about the Gamma function, there has been a whole bunch of results showing that solutions to linear difference equations tend to be hypertranscendental (i.e., they cannot be solution to an algebraic differential equation). In this paper, we obtain the first complete results for solutions to general linear difference equations associated with the shift operator x↦x+hx\mapsto x+h (h∈C∗h\in \mathbb {C}^*), the qq-difference operator x↦qxx\mapsto qx (q∈C∗q\in \mathbb {C}^* not a root of unity), and the Mahler operator x↦xpx\mapsto x^p (p≥2p\geq 2 integer). The only restriction is that we constrain our solutions to be expressed as (possibly ramified) Laurent series in the variable xx with complex coefficients (or in the variable 1/x1/x in some special case associated with the shift operator). Our proof is based on the parametrized difference Galois theory initiated by Hardouin and Singer. We also deduce from our main result a general statement about algebraic independence of values of Mahler functions and their derivatives at algebraic points.
在Hölder证明了他关于伽玛函数的经典定理之后,已经有一大堆结果表明,线性差分方程的解往往是超遍历的(即,它们不可能是代数微分方程的解)。在本文中,我们得到了与移位算子x相关的一般线性差分方程解的第一个完整结果↦ x+hx\mapstox+h(h∈C*h\in\mathbb{C}^*),q q-差分算子x↦ qx\mapsto qx(q∈C*q\in\mathbb{C}^*不是单位根),以及Mahler算子x↦ x p x \ mapsto x ^p(p≥2 p \ geq 2整数)。唯一的限制是,我们约束我们的解在具有复系数的变量x x中(或者在与移位算子相关的一些特殊情况下在变量1/x1/x中)表示为(可能是分支的)Laurent级数。我们的证明是基于Hardouin和Singer提出的参数化差分伽罗瓦理论。我们还从我们的主要结果中推导了关于Mahler函数及其导数在代数点上的值的代数独立性的一般性陈述。
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.