Hypertranscendence and linear difference equations

IF 3.5 1区 数学 Q1 MATHEMATICS
B. Adamczewski, T. Dreyfus, C. Hardouin
{"title":"Hypertranscendence and linear difference equations","authors":"B. Adamczewski, T. Dreyfus, C. Hardouin","doi":"10.1090/jams/960","DOIUrl":null,"url":null,"abstract":"<p>After Hölder proved his classical theorem about the Gamma function, there has been a whole bunch of results showing that solutions to linear difference equations tend to be hypertranscendental (<italic>i.e.</italic>, they cannot be solution to an algebraic differential equation). In this paper, we obtain the first complete results for solutions to general linear difference equations associated with the shift operator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x right-arrow from bar x plus h\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">↦<!-- ↦ --></mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>h</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">x\\mapsto x+h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h element-of double-struck upper C Superscript asterisk\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>h</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">h\\in \\mathbb {C}^*</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>), the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\">\n <mml:semantics>\n <mml:mi>q</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-difference operator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x right-arrow from bar q x\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">↦<!-- ↦ --></mml:mo>\n <mml:mi>q</mml:mi>\n <mml:mi>x</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">x\\mapsto qx</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q element-of double-struck upper C Superscript asterisk\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>q</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">q\\in \\mathbb {C}^*</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> not a root of unity), and the Mahler operator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x right-arrow from bar x Superscript p\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">↦<!-- ↦ --></mml:mo>\n <mml:msup>\n <mml:mi>x</mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">x\\mapsto x^p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (<inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than-or-equal-to 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p\\geq 2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> integer). The only restriction is that we constrain our solutions to be expressed as (possibly ramified) Laurent series in the variable <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x\">\n <mml:semantics>\n <mml:mi>x</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">x</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with complex coefficients (or in the variable <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 slash x\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>x</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">1/x</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in some special case associated with the shift operator). Our proof is based on the parametrized difference Galois theory initiated by Hardouin and Singer. We also deduce from our main result a general statement about algebraic independence of values of Mahler functions and their derivatives at algebraic points.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2019-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/960","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

Abstract

After Hölder proved his classical theorem about the Gamma function, there has been a whole bunch of results showing that solutions to linear difference equations tend to be hypertranscendental (i.e., they cannot be solution to an algebraic differential equation). In this paper, we obtain the first complete results for solutions to general linear difference equations associated with the shift operator x x + h x\mapsto x+h ( h C h\in \mathbb {C}^* ), the q q -difference operator x q x x\mapsto qx ( q C q\in \mathbb {C}^* not a root of unity), and the Mahler operator x x p x\mapsto x^p ( p 2 p\geq 2 integer). The only restriction is that we constrain our solutions to be expressed as (possibly ramified) Laurent series in the variable x x with complex coefficients (or in the variable 1 / x 1/x in some special case associated with the shift operator). Our proof is based on the parametrized difference Galois theory initiated by Hardouin and Singer. We also deduce from our main result a general statement about algebraic independence of values of Mahler functions and their derivatives at algebraic points.

超转移性与线性差分方程
在Hölder证明了他关于伽玛函数的经典定理之后,已经有一大堆结果表明,线性差分方程的解往往是超遍历的(即,它们不可能是代数微分方程的解)。在本文中,我们得到了与移位算子x相关的一般线性差分方程解的第一个完整结果↦ x+hx\mapstox+h(h∈C*h\in\mathbb{C}^*),q q-差分算子x↦ qx\mapsto qx(q∈C*q\in\mathbb{C}^*不是单位根),以及Mahler算子x↦ x p x \ mapsto x ^p(p≥2 p \ geq 2整数)。唯一的限制是,我们约束我们的解在具有复系数的变量x x中(或者在与移位算子相关的一些特殊情况下在变量1/x1/x中)表示为(可能是分支的)Laurent级数。我们的证明是基于Hardouin和Singer提出的参数化差分伽罗瓦理论。我们还从我们的主要结果中推导了关于Mahler函数及其导数在代数点上的值的代数独立性的一般性陈述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信