{"title":"Photosynthetic traits of the ubiquitous and prolific macroalga Ulva (Chlorophyta): a review","authors":"S. Beer","doi":"10.1080/09670262.2022.2150894","DOIUrl":null,"url":null,"abstract":"ABSTRACT Ulva is an opportunistically growing green macroalgal genus, the worldwide distribution of which can partly be explained by its ability to employ two alternative modes of photosynthetic inorganic carbon acquisition. In temperate areas, the less efficient (in terms of inorganic carbon utilization), externally acting, carbonic anhydrase-catalysed HCO3 – to CO2 conversion mechanism prevails. However, when growing in warmer and higher irradiance regions, or if transferred to high-pH seawater, Ulva features a highly efficient HCO3 − uptake system unique among macroalgae. In addition, the light reactions acclimate effectively to various irradiances, including full sunlight in the intertidal. The following topics are discussed in this review, often in a historical perspective, in the context of two questions: (1) Is there a need for a CO2 concentrating mechanism? (Yes!) and (2) if so, is Ulva a C4 alga? (No!). How Ulva utilizes external HCO3 − for its photosynthetic needs is discussed, considering the ability of Ulva to increase pH values to >10 in enclosed areas such as rockpools, and its ecological consequences. The ability of intertidal Ulva to photosynthesize when emergent is addressed, and mechanisms protecting the light reactions from high irradiances are reviewed. Finally, Ulva is viewed in the context of future environments of increased CO2 and ocean acidification. HIGHLIGHTS Photosystems II and I of Ulva are well protected from high irradiances. Ulva is unique among macroalgae in using a plasma membrane HCO3 – transport system. Ulva’s efficient photosynthetic traits allow it to thrive worldwide.","PeriodicalId":12032,"journal":{"name":"European Journal of Phycology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/09670262.2022.2150894","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT Ulva is an opportunistically growing green macroalgal genus, the worldwide distribution of which can partly be explained by its ability to employ two alternative modes of photosynthetic inorganic carbon acquisition. In temperate areas, the less efficient (in terms of inorganic carbon utilization), externally acting, carbonic anhydrase-catalysed HCO3 – to CO2 conversion mechanism prevails. However, when growing in warmer and higher irradiance regions, or if transferred to high-pH seawater, Ulva features a highly efficient HCO3 − uptake system unique among macroalgae. In addition, the light reactions acclimate effectively to various irradiances, including full sunlight in the intertidal. The following topics are discussed in this review, often in a historical perspective, in the context of two questions: (1) Is there a need for a CO2 concentrating mechanism? (Yes!) and (2) if so, is Ulva a C4 alga? (No!). How Ulva utilizes external HCO3 − for its photosynthetic needs is discussed, considering the ability of Ulva to increase pH values to >10 in enclosed areas such as rockpools, and its ecological consequences. The ability of intertidal Ulva to photosynthesize when emergent is addressed, and mechanisms protecting the light reactions from high irradiances are reviewed. Finally, Ulva is viewed in the context of future environments of increased CO2 and ocean acidification. HIGHLIGHTS Photosystems II and I of Ulva are well protected from high irradiances. Ulva is unique among macroalgae in using a plasma membrane HCO3 – transport system. Ulva’s efficient photosynthetic traits allow it to thrive worldwide.
期刊介绍:
The European Journal of Phycology is an important focus for the activities of algal researchers all over the world. The Editors-in-Chief are assisted by an international team of Associate Editors who are experts in the following fields: macroalgal ecology, microalgal ecology, physiology and biochemistry, cell biology, molecular biology, macroalgal and microalgal systematics, applied phycology and biotechnology. The European Journal of Phycology publishes papers on all aspects of algae, including cyanobacteria. Articles may be in the form of primary research papers and reviews of topical subjects.
The journal publishes high quality research and is well cited, with a consistently good Impact Factor.