On weak convergence of quasi-infinitely divisible laws

IF 0.7 3区 数学 Q2 MATHEMATICS
A. Khartov
{"title":"On weak convergence of quasi-infinitely divisible laws","authors":"A. Khartov","doi":"10.2140/pjm.2023.322.341","DOIUrl":null,"url":null,"abstract":"We study a new class of so-called quasi-infinitely divisible laws, which is a wide natural extension of the well known class of infinitely divisible laws through the L\\'evy--Khinchine type representations. We are interested in criteria of weak convergence within this class. Under rather natural assumptions, we state assertions, which connect a weak convergence of quasi-infinitely divisible distribution functions with one special type of convergence of their L\\'evy--Khinchine spectral functions. The latter convergence is not equivalent to the weak convergence. So we complement known results by Lindner, Pan, and Sato (2018) in this field.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.322.341","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We study a new class of so-called quasi-infinitely divisible laws, which is a wide natural extension of the well known class of infinitely divisible laws through the L\'evy--Khinchine type representations. We are interested in criteria of weak convergence within this class. Under rather natural assumptions, we state assertions, which connect a weak convergence of quasi-infinitely divisible distribution functions with one special type of convergence of their L\'evy--Khinchine spectral functions. The latter convergence is not equivalent to the weak convergence. So we complement known results by Lindner, Pan, and Sato (2018) in this field.
拟无限可分律的弱收敛性
我们研究了一类新的所谓的拟无限可分律,它通过L\ \ evy—Khinchine型表示对已知的无限可分律进行了广泛的自然扩展。我们感兴趣的是这门课的弱收敛准则。在相当自然的假设下,我们陈述了将拟无限可分分布函数的弱收敛与它们的L\'evy- Khinchine谱函数的一种特殊收敛型联系起来的断言。后一种收敛性并不等同于弱收敛性。因此,我们补充了Lindner, Pan和Sato(2018)在该领域的已知结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信