Virtual Artin groups

IF 1.5 1区 数学 Q1 MATHEMATICS
P. Bellingeri, L. Paris, A. Thiel
{"title":"Virtual Artin groups","authors":"P. Bellingeri, L. Paris, A. Thiel","doi":"10.1112/plms.12491","DOIUrl":null,"url":null,"abstract":"Starting from the observation that the standard presentation of a virtual braid group mixes the standard presentation of the corresponding braid group with the standard presentation of the corresponding symmetric group and some mixed relations that mimic the action of the symmetric group on its root system, we define a virtual Artin group VA[Γ]${\\rm VA}[\\Gamma ]$ of a Coxeter graph Γ$\\Gamma$ mixing the standard presentation of the Artin group A[Γ]$A[\\Gamma ]$ with the standard presentation of the Coxeter group W[Γ]$W[\\Gamma ]$ and some mixed relations that mimic the action of W[Γ]$W[\\Gamma ]$ on its root system. By definition, we have two epimorphisms πK:VA[Γ]→W[Γ]$\\pi _K:{\\rm VA}[\\Gamma ]\\rightarrow W[\\Gamma ]$ and πP:VA[Γ]→W[Γ]$\\pi _P:{\\rm VA}[\\Gamma ]\\rightarrow W[\\Gamma ]$ whose kernels are denoted by KVA[Γ]${\\rm KVA}[\\Gamma ]$ and PVA[Γ]${\\rm PVA}[\\Gamma ]$ , respectively. We calculate presentations for these two subgroups. In particular, KVA[Γ]${\\rm KVA}[\\Gamma ]$ is an Artin group. We prove that the center of any virtual Artin group is trivial. In the case where Γ$\\Gamma$ is of spherical type or of affine type, we show that each free of infinity parabolic subgroup of KVA[Γ]${\\rm KVA}[\\Gamma ]$ is also of spherical type or of affine type, and we show that VA[Γ]${\\rm VA}[\\Gamma ]$ has a solution to the word problem. In the case where Γ$\\Gamma$ is of spherical type we show that KVA[Γ]${\\rm KVA}[\\Gamma ]$ satisfies the K(π,1)$K(\\pi ,1)$ conjecture and we infer the cohomological dimension of KVA[Γ]${\\rm KVA}[\\Gamma ]$ and the virtual cohomological dimension of VA[Γ]${\\rm VA}[\\Gamma ]$ . In the case where Γ$\\Gamma$ is of affine type we determine upper bounds for the cohomological dimension of KVA[Γ]${\\rm KVA}[\\Gamma ]$ and for the virtual cohomological dimension of VA[Γ]${\\rm VA}[\\Gamma ]$ .","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12491","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Starting from the observation that the standard presentation of a virtual braid group mixes the standard presentation of the corresponding braid group with the standard presentation of the corresponding symmetric group and some mixed relations that mimic the action of the symmetric group on its root system, we define a virtual Artin group VA[Γ]${\rm VA}[\Gamma ]$ of a Coxeter graph Γ$\Gamma$ mixing the standard presentation of the Artin group A[Γ]$A[\Gamma ]$ with the standard presentation of the Coxeter group W[Γ]$W[\Gamma ]$ and some mixed relations that mimic the action of W[Γ]$W[\Gamma ]$ on its root system. By definition, we have two epimorphisms πK:VA[Γ]→W[Γ]$\pi _K:{\rm VA}[\Gamma ]\rightarrow W[\Gamma ]$ and πP:VA[Γ]→W[Γ]$\pi _P:{\rm VA}[\Gamma ]\rightarrow W[\Gamma ]$ whose kernels are denoted by KVA[Γ]${\rm KVA}[\Gamma ]$ and PVA[Γ]${\rm PVA}[\Gamma ]$ , respectively. We calculate presentations for these two subgroups. In particular, KVA[Γ]${\rm KVA}[\Gamma ]$ is an Artin group. We prove that the center of any virtual Artin group is trivial. In the case where Γ$\Gamma$ is of spherical type or of affine type, we show that each free of infinity parabolic subgroup of KVA[Γ]${\rm KVA}[\Gamma ]$ is also of spherical type or of affine type, and we show that VA[Γ]${\rm VA}[\Gamma ]$ has a solution to the word problem. In the case where Γ$\Gamma$ is of spherical type we show that KVA[Γ]${\rm KVA}[\Gamma ]$ satisfies the K(π,1)$K(\pi ,1)$ conjecture and we infer the cohomological dimension of KVA[Γ]${\rm KVA}[\Gamma ]$ and the virtual cohomological dimension of VA[Γ]${\rm VA}[\Gamma ]$ . In the case where Γ$\Gamma$ is of affine type we determine upper bounds for the cohomological dimension of KVA[Γ]${\rm KVA}[\Gamma ]$ and for the virtual cohomological dimension of VA[Γ]${\rm VA}[\Gamma ]$ .
虚拟艺术团
从观察到虚拟编织群的标准表示混合了相应编织群的标准表示与相应对称群的标准表示以及模仿对称群在其根系统上的作用的一些混合关系开始,我们定义了虚拟Artin群VA[Γ]${\rm VA}[\Gamma ]$ 考克斯特图Γ$\Gamma$ 混合了Artin组A的标准呈现[Γ]$A[\Gamma ]$ Coxeter组W的标准演示[Γ]$W[\Gamma ]$ 和一些混合关系,模仿W的作用[Γ]$W[\Gamma ]$ 在它的根系上。根据定义,我们有两个外胚πK:VA[Γ]→W[Γ]$\pi _K:{\rm VA}[\Gamma ]\rightarrow W[\Gamma ]$ 和πP:VA[Γ]→W[Γ]$\pi _P:{\rm VA}[\Gamma ]\rightarrow W[\Gamma ]$ 其核用KVA[Γ]表示${\rm KVA}[\Gamma ]$ 及PVA[Γ]${\rm PVA}[\Gamma ]$ ,分别。我们计算这两个子组的演示文稿。特别是KVA[Γ]${\rm KVA}[\Gamma ]$ 是一个艺术团体。证明了任意虚Artin群的中心都是平凡的。在Γ$\Gamma$ 是球面型或仿射型,我们证明了KVA的无限抛物子群的每一个自由[Γ]${\rm KVA}[\Gamma ]$ 也是球形或仿射型,我们证明VA[Γ]${\rm VA}[\Gamma ]$ 有一个解决单词问题的方法。在Γ$\Gamma$ 是球形的,我们表明KVA[Γ]${\rm KVA}[\Gamma ]$ 满足K(π,1)$K(\pi ,1)$ 我们推断出KVA的上同调维数[Γ]${\rm KVA}[\Gamma ]$ 和VA的虚上同维数[Γ]${\rm VA}[\Gamma ]$ 。在Γ$\Gamma$ 是仿射型的,我们确定了KVA上同维数的上界[Γ]${\rm KVA}[\Gamma ]$ 和VA的虚上同维数[Γ]${\rm VA}[\Gamma ]$ .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信