Bivariate box plots based on quantile regression curves

IF 0.6 Q4 STATISTICS & PROBABILITY
J. Navarro
{"title":"Bivariate box plots based on quantile regression curves","authors":"J. Navarro","doi":"10.1515/demo-2020-0008","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we propose a procedure to build bivariate box plots (BBP). We first obtain the theoretical BBP for a random vector (X, Y). They are based on the univariate box plot of X and the conditional quantile curves of Y|X. They can be computed from the copula of (X, Y) and the marginal distributions. The main advantage of these BBP is that the coverage probabilities of the regions are distribution-free. So they can be selected by the users with the desired probabilities and they can be used to perform fit tests. Three reasonable options are proposed. They are illustrated with two examples from a normal model and an exponential model with a Clayton copula. Moreover, several methods to estimate the theoretical BBP are discussed. The main ones are based on linear and non-linear quantile regression. The others are based on empirical estimators and parametric and non-parametric (kernel) copula estimations. All of them can be used to get empirical BBP. Some extensions for the multivariate case are proposed as well.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"8 1","pages":"132 - 156"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2020-0008","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2020-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract In this paper, we propose a procedure to build bivariate box plots (BBP). We first obtain the theoretical BBP for a random vector (X, Y). They are based on the univariate box plot of X and the conditional quantile curves of Y|X. They can be computed from the copula of (X, Y) and the marginal distributions. The main advantage of these BBP is that the coverage probabilities of the regions are distribution-free. So they can be selected by the users with the desired probabilities and they can be used to perform fit tests. Three reasonable options are proposed. They are illustrated with two examples from a normal model and an exponential model with a Clayton copula. Moreover, several methods to estimate the theoretical BBP are discussed. The main ones are based on linear and non-linear quantile regression. The others are based on empirical estimators and parametric and non-parametric (kernel) copula estimations. All of them can be used to get empirical BBP. Some extensions for the multivariate case are proposed as well.
基于分位数回归曲线的二元箱形图
摘要在本文中,我们提出了一个建立二元盒图(BBP)的程序。我们首先得到了随机向量(X,Y)的理论BBP。它们基于X的单变量箱图和Y|X的条件分位数曲线。它们可以根据(X,Y)的copula和边际分布来计算。这些BBP的主要优点是区域的覆盖概率是无分布的。因此,用户可以用所需的概率选择它们,并可以使用它们进行拟合测试。提出了三个合理的方案。通过一个正态模型和一个带有Clayton copula的指数模型的两个例子来说明它们。此外,还讨论了估计理论BBP的几种方法。主要是基于线性和非线性分位数回归。其他的是基于经验估计以及参数和非参数(核)copula估计。所有这些都可以用来获得经验BBP。对多元情形也提出了一些扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dependence Modeling
Dependence Modeling STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to):  -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信