Baum–Connes and the Fourier–Mukai transform

IF 0.6 Q3 MATHEMATICS
Heath Emerson, Dan Hudson
{"title":"Baum–Connes and the Fourier–Mukai transform","authors":"Heath Emerson, Dan Hudson","doi":"10.1215/00192082-9725548","DOIUrl":null,"url":null,"abstract":"The Baum-Connes map for finitely generated free abelian groups is a K-theoretic analogue of the Fourier-Mukai transform from algebraic geometry. We describe this K-theoretic transform in the language of topological correspondences, and compute its action on K-theory (of tori) described geometrically in terms of Baum-Douglas cocycles, showing that the Fourier-Mukai transform maps the class of a subtorus to the class of a suitably defined dual torus. We deduce the Fourier-Mukai inversion formula. We use these results to give a purely geometric description of the Baum-Connes assembly map for free abelian groups.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-9725548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Baum-Connes map for finitely generated free abelian groups is a K-theoretic analogue of the Fourier-Mukai transform from algebraic geometry. We describe this K-theoretic transform in the language of topological correspondences, and compute its action on K-theory (of tori) described geometrically in terms of Baum-Douglas cocycles, showing that the Fourier-Mukai transform maps the class of a subtorus to the class of a suitably defined dual torus. We deduce the Fourier-Mukai inversion formula. We use these results to give a purely geometric description of the Baum-Connes assembly map for free abelian groups.
Baum-Connes和Fourier-Mukai变换
有限生成自由阿贝尔群的Baum-Connes映射是代数几何中傅立叶-穆凯变换的K理论模拟。我们用拓扑对应的语言描述了这种K-理论变换,并计算了它对用Baum-Douglas共循环几何描述的(环面的)K-理论的作用,表明傅立叶-穆凯变换将子环面的类映射到适当定义的对偶环面的类。我们推导了傅立叶Mukai反演公式。我们用这些结果给出了自由阿贝尔群的Baum-Connes装配映射的纯几何描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信