L. Lapčík, Harun Sepetcioglu, Yousef Murtaja, B. Lapčíková, M. Vašina, M. Ovsik, M. Stanek, S. Gautam
{"title":"Study of mechanical properties of epoxy/graphene and epoxy/halloysite nanocomposites","authors":"L. Lapčík, Harun Sepetcioglu, Yousef Murtaja, B. Lapčíková, M. Vašina, M. Ovsik, M. Stanek, S. Gautam","doi":"10.1515/ntrev-2022-0520","DOIUrl":null,"url":null,"abstract":"Abstract This article aimed to compare various mechanical properties of epoxy/graphene and epoxy/halloysite nanocomposites. Graphene nanoplatelets (GnPs) and halloysite nanotubes (HNTs) were used as fillers at different concentrations. The studied fillers were dispersed in the epoxy resin matrices. Elastic–plastic mechanical behavior modulation was observed utilizing the fillers’ nanoparticles and carboxyl-terminated butadiene–acrylonitrile copolymer rubber-modified epoxy resin. The hypothesis of the possible preceding inter-particle gliding of the individual GnPs in the complex resin nanocomposite matrix during mechanical testings was also confirmed. Increased ductility (elongation at break increased from 0.33 mm [neat matrix] to 0.46 mm [1 wt% GnPs] [39% increase]) and plasticity of the GnP nanocomposite samples were observed. In contrast, the decreasing mechanical stiffness as reflected in the decreased Young’s modulus of elasticity (from 3.4 to 2.7 GPa [20% decrease]) was found for the epoxy/HNT nanocomposites. The obtained dynamic stiffness of the investigated nanocomposites confirmed the complexity of the mechanical response of the studied material systems as a combination of the ductile and brittle phenomena.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/ntrev-2022-0520","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract This article aimed to compare various mechanical properties of epoxy/graphene and epoxy/halloysite nanocomposites. Graphene nanoplatelets (GnPs) and halloysite nanotubes (HNTs) were used as fillers at different concentrations. The studied fillers were dispersed in the epoxy resin matrices. Elastic–plastic mechanical behavior modulation was observed utilizing the fillers’ nanoparticles and carboxyl-terminated butadiene–acrylonitrile copolymer rubber-modified epoxy resin. The hypothesis of the possible preceding inter-particle gliding of the individual GnPs in the complex resin nanocomposite matrix during mechanical testings was also confirmed. Increased ductility (elongation at break increased from 0.33 mm [neat matrix] to 0.46 mm [1 wt% GnPs] [39% increase]) and plasticity of the GnP nanocomposite samples were observed. In contrast, the decreasing mechanical stiffness as reflected in the decreased Young’s modulus of elasticity (from 3.4 to 2.7 GPa [20% decrease]) was found for the epoxy/HNT nanocomposites. The obtained dynamic stiffness of the investigated nanocomposites confirmed the complexity of the mechanical response of the studied material systems as a combination of the ductile and brittle phenomena.
期刊介绍:
The bimonthly journal Nanotechnology Reviews provides a platform for scientists and engineers of all involved disciplines to exchange important recent research on fundamental as well as applied aspects. While expert reviews provide a state of the art assessment on a specific topic, research highlight contributions present most recent and novel findings.
In addition to technical contributions, Nanotechnology Reviews publishes articles on implications of nanotechnology for society, environment, education, intellectual property, industry, and politics.