Supervised Transfer Learning for Multi Organs 3D Segmentation With Registration Tools for Metal Artifact Reduction in CT Images

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hanaa M. Al Abboodi, A. Al-Funjan, N. A. Hamza, Alaa H. Abdullah, Bashar H. Shami
{"title":"Supervised Transfer Learning for Multi Organs 3D Segmentation With Registration Tools for Metal Artifact Reduction in CT Images","authors":"Hanaa M. Al Abboodi, A. Al-Funjan, N. A. Hamza, Alaa H. Abdullah, Bashar H. Shami","doi":"10.18421/tem123-14","DOIUrl":null,"url":null,"abstract":"Radiological diagnostics are undeniably crucial in everyday healthcare. CT scans can sometimes provide misleading clues and delay successive treatment due to artifacts caused by reflected radiation from metallic implants. This work successfully segments multiple organs containing metal implants and discards artifacts using a combination of non-rigid transformations, Scribbles-based segmentation, and a pre-trained auto segmentation model (DynaUnet -Pretrained-Model). The presented transfer learning model combined the benefits of an interactive environment and reduced computational and processing-time costs. The transfer learning model proved high auto segmentation performance for multi-organs with metal implants' presence by decreasing metal artefact's impact on the segmentation process and the achieved segmentation accuracies between 0.9998 for the spleen and 0.9829 for the stomach.","PeriodicalId":45439,"journal":{"name":"TEM Journal-Technology Education Management Informatics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEM Journal-Technology Education Management Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18421/tem123-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Radiological diagnostics are undeniably crucial in everyday healthcare. CT scans can sometimes provide misleading clues and delay successive treatment due to artifacts caused by reflected radiation from metallic implants. This work successfully segments multiple organs containing metal implants and discards artifacts using a combination of non-rigid transformations, Scribbles-based segmentation, and a pre-trained auto segmentation model (DynaUnet -Pretrained-Model). The presented transfer learning model combined the benefits of an interactive environment and reduced computational and processing-time costs. The transfer learning model proved high auto segmentation performance for multi-organs with metal implants' presence by decreasing metal artefact's impact on the segmentation process and the achieved segmentation accuracies between 0.9998 for the spleen and 0.9829 for the stomach.
基于配准工具的监督迁移学习多器官三维分割CT图像中金属伪影的减少
不可否认,放射诊断在日常医疗保健中至关重要。CT扫描有时会提供误导性的线索,并由于金属植入物反射辐射引起的伪影而延迟后续治疗。这项工作成功地分割了包含金属植入物的多个器官,并使用非刚性转换、基于scribbles的分割和预训练的自动分割模型(DynaUnet -Pretrained-Model)的组合来丢弃人工制品。所提出的迁移学习模型结合了交互环境的优点,并减少了计算和处理时间成本。通过降低金属伪像对分割过程的影响,迁移学习模型对金属植入物存在的多器官具有较高的自动分割性能,脾脏和胃的分割准确率在0.9998和0.9829之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
TEM Journal-Technology Education Management Informatics
TEM Journal-Technology Education Management Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.20
自引率
14.30%
发文量
176
审稿时长
8 weeks
期刊介绍: TEM JOURNAL - Technology, Education, Management, Informatics Is a an Open Access, Double-blind peer reviewed journal that publishes articles of interdisciplinary sciences: • Technology, • Computer and informatics sciences, • Education, • Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信