{"title":"Modelling spatiotemporal tendencies of climate types by Markov chain approach : A case study in Sanliurfa province in the south-eastern of Turkey","authors":"A. Keskiner, M. Cetin","doi":"10.54302/mausam.v74i3.872","DOIUrl":null,"url":null,"abstract":"Identification of spatiotemporal tendencies of climate types may help water managers mitigate the negative impacts of droughts on water-demanding sectors. The primary objective of this study was to figure out the spatiotemporal tendencies of climatetypes in Sanliurfa province by using Erinc’s aridity index (EDI). To that end, long-term (1965-2018) annual precipitation and average annual maximum temperature series of meteorological stations were obtained and utilized to calculate the EDI series on a yearly basis. The EDI series of each station was divided into three periods, non-overlapping and successive, i.e., P1 (1965-1981), P2 (1982-1999) and P3 (2000-2018). Outliers were detected, andremoved from the EDI series; missing data were completed by regression analysis. The Markov transition probability matrix of the climate classes for the three periods was estimated for each station. Maps of the initial probability vectors and steady-state probabilities for the three periods of each climate class were generated by the inverse distance-weighted technique. Hypsometric curves for each climate class, as well as period, were developed and areal coverage of occurrence probabilities (OP) was determined. Results indicated that, as time progressed, the areal extent of severe-arid and arid climatic classes continued consistently to spread from the south to the north. Areas of semi-arid climate type showed a slight tendency towards the arid-climate type. Construction of large dams in the region could not prevent the shifts in the climate in favour of developing arid zones. The humid climate class is likely to vanish away in the future. Research led us to conclude that the expansion of the aridzone from south to northhas been alarming in terms of the adequacy of water resources. It is strongly recommended that spatiotemporal climate change studies should be periodically conducted in tandem with forest management practices for the region.","PeriodicalId":18363,"journal":{"name":"MAUSAM","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAUSAM","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.54302/mausam.v74i3.872","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Identification of spatiotemporal tendencies of climate types may help water managers mitigate the negative impacts of droughts on water-demanding sectors. The primary objective of this study was to figure out the spatiotemporal tendencies of climatetypes in Sanliurfa province by using Erinc’s aridity index (EDI). To that end, long-term (1965-2018) annual precipitation and average annual maximum temperature series of meteorological stations were obtained and utilized to calculate the EDI series on a yearly basis. The EDI series of each station was divided into three periods, non-overlapping and successive, i.e., P1 (1965-1981), P2 (1982-1999) and P3 (2000-2018). Outliers were detected, andremoved from the EDI series; missing data were completed by regression analysis. The Markov transition probability matrix of the climate classes for the three periods was estimated for each station. Maps of the initial probability vectors and steady-state probabilities for the three periods of each climate class were generated by the inverse distance-weighted technique. Hypsometric curves for each climate class, as well as period, were developed and areal coverage of occurrence probabilities (OP) was determined. Results indicated that, as time progressed, the areal extent of severe-arid and arid climatic classes continued consistently to spread from the south to the north. Areas of semi-arid climate type showed a slight tendency towards the arid-climate type. Construction of large dams in the region could not prevent the shifts in the climate in favour of developing arid zones. The humid climate class is likely to vanish away in the future. Research led us to conclude that the expansion of the aridzone from south to northhas been alarming in terms of the adequacy of water resources. It is strongly recommended that spatiotemporal climate change studies should be periodically conducted in tandem with forest management practices for the region.
期刊介绍:
MAUSAM (Formerly Indian Journal of Meteorology, Hydrology & Geophysics), established in January 1950, is the quarterly research
journal brought out by the India Meteorological Department (IMD). MAUSAM is a medium for publication of original scientific
research work. MAUSAM is a premier scientific research journal published in this part of the world in the fields of Meteorology,
Hydrology & Geophysics. The four issues appear in January, April, July & October.