Xiaojuan Sun, Shijie Liu, Hongliang Sun, Xingren Li, Yu Wang
{"title":"Influence of wheelset structural flexibility on dynamic properties of a wide-gauge six-axle heavy-haul locomotive","authors":"Xiaojuan Sun, Shijie Liu, Hongliang Sun, Xingren Li, Yu Wang","doi":"10.21595/jve.2023.23353","DOIUrl":null,"url":null,"abstract":"Wheelset structural flexibility, that is the elastic deformation of the wheelset as a structure, has an important influence on the dynamic properties of railway locomotive vehicles at medium and high frequencies. Based on the practical structural parameters, this paper proposes a multi-degree of freedom rigid-flexible coupling dynamic model of a wide-gauge freight electric locomotive with C0-C0 bogies with an axle suspension driving system. The wheelset with the interference-fit large gear is made flexible using the finite element method, and then the rigid-flexible coupling vehicle model with elastic wheelsets is established in the software SIMPACK 2020. A short-wave irregularity superposed on the American fifth-grade track irregularity is used as the track excitation to study the performance at higher frequencies. From the modal analysis of the vehicle, it is obtained that the lowest frequency at which the elastic deformation of the wheelset occurs is 24.631 Hz. The lateral vibration responses of the vehicle with elastic wheelsets are reduced mainly in the frequency range of 30-150 Hz. There are two resonances in the lateral vibration responses at the mode frequencies of the vehicle over 50 Hz, which are close to the wheelset’s first mode frequency. Taking the ГОСТ standard of wide-gauge countries as the main reference, simulations are separately taken in straight-line and curved-line cases. Results show that the wheelset structural flexibility mainly influences the vehicle lateral stability and safety.","PeriodicalId":49956,"journal":{"name":"Journal of Vibroengineering","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibroengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/jve.2023.23353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wheelset structural flexibility, that is the elastic deformation of the wheelset as a structure, has an important influence on the dynamic properties of railway locomotive vehicles at medium and high frequencies. Based on the practical structural parameters, this paper proposes a multi-degree of freedom rigid-flexible coupling dynamic model of a wide-gauge freight electric locomotive with C0-C0 bogies with an axle suspension driving system. The wheelset with the interference-fit large gear is made flexible using the finite element method, and then the rigid-flexible coupling vehicle model with elastic wheelsets is established in the software SIMPACK 2020. A short-wave irregularity superposed on the American fifth-grade track irregularity is used as the track excitation to study the performance at higher frequencies. From the modal analysis of the vehicle, it is obtained that the lowest frequency at which the elastic deformation of the wheelset occurs is 24.631 Hz. The lateral vibration responses of the vehicle with elastic wheelsets are reduced mainly in the frequency range of 30-150 Hz. There are two resonances in the lateral vibration responses at the mode frequencies of the vehicle over 50 Hz, which are close to the wheelset’s first mode frequency. Taking the ГОСТ standard of wide-gauge countries as the main reference, simulations are separately taken in straight-line and curved-line cases. Results show that the wheelset structural flexibility mainly influences the vehicle lateral stability and safety.
期刊介绍:
Journal of VIBROENGINEERING (JVE) ISSN 1392-8716 is a prestigious peer reviewed International Journal specializing in theoretical and practical aspects of Vibration Engineering. It is indexed in ESCI and other major databases. Published every 1.5 months (8 times yearly), the journal attracts attention from the International Engineering Community.