{"title":"A priori error estimates of two monolithic schemes for Biot's consolidation model","authors":"H. Gu, M. Cai, Jingzhi Li, Guoliang Ju","doi":"10.1002/num.23059","DOIUrl":null,"url":null,"abstract":"This paper concentrates on a priori error estimates of two monolithic schemes for Biot's consolidation model based on the three‐field formulation introduced by Oyarzúa et al. (SIAM J Numer Anal, 2016). The spatial discretizations are based on the Taylor–Hood finite elements combined with Lagrange elements for the three primary variables. We employ two different schemes to discretize the time domain. One uses the backward Euler method, and the other applies the combination of the backward Euler and Crank‐Nicolson methods. A priori error estimates show that both schemes are unconditionally convergent with optimal error orders. Detailed numerical experiments are presented to validate the theoretical analysis.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23059","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
This paper concentrates on a priori error estimates of two monolithic schemes for Biot's consolidation model based on the three‐field formulation introduced by Oyarzúa et al. (SIAM J Numer Anal, 2016). The spatial discretizations are based on the Taylor–Hood finite elements combined with Lagrange elements for the three primary variables. We employ two different schemes to discretize the time domain. One uses the backward Euler method, and the other applies the combination of the backward Euler and Crank‐Nicolson methods. A priori error estimates show that both schemes are unconditionally convergent with optimal error orders. Detailed numerical experiments are presented to validate the theoretical analysis.
期刊介绍:
An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.