Proper biharmonic maps on tangent bundle

Q3 Mathematics
N. Djaa, F. Latti, A. Zagane
{"title":"Proper biharmonic maps on tangent bundle","authors":"N. Djaa, F. Latti, A. Zagane","doi":"10.46298/cm.10305","DOIUrl":null,"url":null,"abstract":"This paper, we define the Mus-Gradient metric on tangent bundle $TM$ by a\ndeformation non-conform of Sasaki metric over an n-dimensional Riemannian\nmanifold $(M, g)$. First we investigate the geometry of the Mus-Gradient metric\nand we characterize a new class of proper biharmonic maps. Examples of proper\nbiharmonic maps are constructed when all of the factors are Euclidean spaces.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.10305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper, we define the Mus-Gradient metric on tangent bundle $TM$ by a deformation non-conform of Sasaki metric over an n-dimensional Riemannian manifold $(M, g)$. First we investigate the geometry of the Mus-Gradient metric and we characterize a new class of proper biharmonic maps. Examples of proper biharmonic maps are constructed when all of the factors are Euclidean spaces.
切线束上的固有双调和映射
本文利用n维黎曼流形$(M,g)$上Sasaki度量的不相容性定义了切丛$TM$上的Mus梯度度量。首先,我们研究了Mus梯度度量的几何性质,并刻画了一类新的适当双调和映射。当所有因子都是欧几里得空间时,构造了前轨道调和映射的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信