{"title":"Identification of the time-dependent source term in a Kuramoto–Sivashinsky equation","authors":"K. Cao","doi":"10.1515/jiip-2022-0030","DOIUrl":null,"url":null,"abstract":"Abstract The determination of an unknown time-dependent source term is investigated in a Kuramoto–Sivashinsky equation from given additional integral-type measurement. Based on Schauder’s fixed point theorem, the existence and uniqueness of such inverse problem are obtained under certain assumptions on the input data. In order to calculate the unknown source term, a time-discrete system is established, and its solution shall be applied to approximate the unknown quantity. The existence, uniqueness and some estimates to the time-discrete system are derived, and the convergence rates are deduced rigorously for both exact and noisy observation, respectively. Finally, the theoretical convergence rate results are verified, and accurate and stable solutions to the inverse problem are computed numerically by two numerical experiments.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2022-0030","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The determination of an unknown time-dependent source term is investigated in a Kuramoto–Sivashinsky equation from given additional integral-type measurement. Based on Schauder’s fixed point theorem, the existence and uniqueness of such inverse problem are obtained under certain assumptions on the input data. In order to calculate the unknown source term, a time-discrete system is established, and its solution shall be applied to approximate the unknown quantity. The existence, uniqueness and some estimates to the time-discrete system are derived, and the convergence rates are deduced rigorously for both exact and noisy observation, respectively. Finally, the theoretical convergence rate results are verified, and accurate and stable solutions to the inverse problem are computed numerically by two numerical experiments.
期刊介绍:
This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published.
Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest.
The following topics are covered:
Inverse problems
existence and uniqueness theorems
stability estimates
optimization and identification problems
numerical methods
Ill-posed problems
regularization theory
operator equations
integral geometry
Applications
inverse problems in geophysics, electrodynamics and acoustics
inverse problems in ecology
inverse and ill-posed problems in medicine
mathematical problems of tomography