Unitriangular shape of decomposition matrices of unipotent blocks

IF 5.7 1区 数学 Q1 MATHEMATICS
Olivier Brunat, O. Dudas, Jay Taylor
{"title":"Unitriangular shape of decomposition matrices of unipotent\n blocks","authors":"Olivier Brunat, O. Dudas, Jay Taylor","doi":"10.4007/annals.2020.192.2.7","DOIUrl":null,"url":null,"abstract":"We show that the decomposition matrix of unipotent $\\ell$-blocks of a finite reductive group $\\mathbf{G}(\\mathbb{F}_q)$ has a unitriangular shape, assuming $q$ is a power of a good prime and $\\ell$ is very good for $\\mathbf{G}$. This was conjectured by Geck in 1990 as part of his PhD thesis. We establish this result by constructing projective modules using a modification of generalised Gelfand--Graev characters introduced by Kawanaka. We prove that each such character has at most one unipotent constituent which occurs with multiplicity one. This establishes a 30 year old conjecture of Kawanaka.","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2019-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2020.192.2.7","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 16

Abstract

We show that the decomposition matrix of unipotent $\ell$-blocks of a finite reductive group $\mathbf{G}(\mathbb{F}_q)$ has a unitriangular shape, assuming $q$ is a power of a good prime and $\ell$ is very good for $\mathbf{G}$. This was conjectured by Geck in 1990 as part of his PhD thesis. We establish this result by constructing projective modules using a modification of generalised Gelfand--Graev characters introduced by Kawanaka. We prove that each such character has at most one unipotent constituent which occurs with multiplicity one. This establishes a 30 year old conjecture of Kawanaka.
幂块分解矩阵的单角形状
我们证明了有限归约群$\mathbf{G}(\mathbb{F}_q)$具有单三角形状,假设$q$是好素数的幂,$\ell$对$\mathbf{G}$非常好。这是Geck在1990年博士论文中推测的。我们通过使用Kawanaka引入的广义Gelfand-Graev字符的修改来构造投影模来建立这个结果。我们证明了每一个这样的特征至多有一个以多重性1出现的单极成分。这建立了一个有30年历史的Kawanaka猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Mathematics
Annals of Mathematics 数学-数学
CiteScore
9.10
自引率
2.00%
发文量
29
审稿时长
12 months
期刊介绍: The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信