Comparison between self‐organizing map and principal component analysis for water quality assessment and hydro‐geochemical characterization in dyke intruded complex geological settings

IF 1.7 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Surabhi Gupta, S. Maiti
{"title":"Comparison between self‐organizing map and principal component analysis for water quality assessment and hydro‐geochemical characterization in dyke intruded complex geological settings","authors":"Surabhi Gupta, S. Maiti","doi":"10.1111/wej.12855","DOIUrl":null,"url":null,"abstract":"Hydro‐geochemical characterization is challenging in dyke intruded complex geological setting. The comparison between self‐organizing map (SOM) classification and principal component analysis (PCA) is used for better understanding of hydrogeological process surrounding Amarpur dyke in Dhanbad district, Jharkhand. Total 30 water samples were collected and tested for 12 physicochemical parameters. The K‐means clustering with SOM grouped the water quality data into cluster 1 (46.67%, low mineralization), cluster 2 (36.67%, moderate mineralization) and cluster 3 (16.67%, high mineralization). The clusters of the majority of samples identified by PCA analysis is almost same as identified by SOM with little difficulty in discriminating between cluster 2 and cluster 3. The transformation of Ca‐HCO3 to Ca‐Cl‐SO4 occurred because of exchange of Ca2+ with Na+ adsorbed in the aquifer leading excess of sulphate ions. The results of this study suggest that SOM is an effective tool for a better understanding of patterns and processes driving water quality.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":"37 1","pages":"512 - 526"},"PeriodicalIF":1.7000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water and Environment Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/wej.12855","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hydro‐geochemical characterization is challenging in dyke intruded complex geological setting. The comparison between self‐organizing map (SOM) classification and principal component analysis (PCA) is used for better understanding of hydrogeological process surrounding Amarpur dyke in Dhanbad district, Jharkhand. Total 30 water samples were collected and tested for 12 physicochemical parameters. The K‐means clustering with SOM grouped the water quality data into cluster 1 (46.67%, low mineralization), cluster 2 (36.67%, moderate mineralization) and cluster 3 (16.67%, high mineralization). The clusters of the majority of samples identified by PCA analysis is almost same as identified by SOM with little difficulty in discriminating between cluster 2 and cluster 3. The transformation of Ca‐HCO3 to Ca‐Cl‐SO4 occurred because of exchange of Ca2+ with Na+ adsorbed in the aquifer leading excess of sulphate ions. The results of this study suggest that SOM is an effective tool for a better understanding of patterns and processes driving water quality.

Abstract Image

自组织图与主成分分析在堤防侵入复杂地质环境中水质评价与水文地球化学表征的比较
在岩脉侵入的复杂地质环境中,水文地球化学表征具有挑战性。将自组织图(SOM)分类与主成分分析(PCA)进行比较,有助于更好地了解贾坎德邦丹巴德地区Amarpur堤岸周围的水文地质过程。共采集了30个水样,对12个理化参数进行了检测。基于SOM的K均值聚类将水质数据分为聚类1(46.67%,低矿化度)、聚类2(36.67%,中等矿化度)和聚类3(16.67%,高矿化度)。PCA识别的大部分样本的聚类与SOM识别的聚类几乎相同,在区分聚类2和聚类3方面没有什么困难。Ca - HCO3向Ca - Cl - SO4的转化是由于Ca2+与含水层中吸附的Na+交换导致硫酸盐离子过量。本研究的结果表明,SOM是更好地理解驱动水质的模式和过程的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water and Environment Journal
Water and Environment Journal 环境科学-湖沼学
CiteScore
4.80
自引率
0.00%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Water and Environment Journal is an internationally recognised peer reviewed Journal for the dissemination of innovations and solutions focussed on enhancing water management best practice. Water and Environment Journal is available to over 12,000 institutions with a further 7,000 copies physically distributed to the Chartered Institution of Water and Environmental Management (CIWEM) membership, comprised of environment sector professionals based across the value chain (utilities, consultancy, technology suppliers, regulators, government and NGOs). As such, the journal provides a conduit between academics and practitioners. We therefore particularly encourage contributions focussed at the interface between academia and industry, which deliver industrially impactful applied research underpinned by scientific evidence. We are keen to attract papers on a broad range of subjects including: -Water and wastewater treatment for agricultural, municipal and industrial applications -Sludge treatment including processing, storage and management -Water recycling -Urban and stormwater management -Integrated water management strategies -Water infrastructure and distribution -Climate change mitigation including management of impacts on agriculture, urban areas and infrastructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信