{"title":"Simulation of Hydraulic Fracture Propagation in Fractured Coal Seams with Continuum-discontinuum Elements","authors":"Hai-chao Zhou, Huixing Gao, C. Feng, Zizheng Sun","doi":"10.22055/JACM.2021.37475.3022","DOIUrl":null,"url":null,"abstract":"Creating new fracture networks in coal seams with natural fractures through hydraulic fracturing techniques is an effective method for exploiting coal-bed methane. In this paper, a continuum-discontinuum element method (CDEM) is developed for simulating and assessing hydraulic fracture propagation in coal seams. An elastic-damage-fracture model is proposed for capturing the deformation and cracking processes of fractured coal. A stress-fracture percolation relation is implemented to simulate the hydro-mechanical coupling processes. The influence of X-direction angles, mechanical strengths, distances and lengths of natural fractures are analyzed in detail. The results are potentially useful to optimize the fracturing design.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":"7 1","pages":"2185-2195"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22055/JACM.2021.37475.3022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 2
Abstract
Creating new fracture networks in coal seams with natural fractures through hydraulic fracturing techniques is an effective method for exploiting coal-bed methane. In this paper, a continuum-discontinuum element method (CDEM) is developed for simulating and assessing hydraulic fracture propagation in coal seams. An elastic-damage-fracture model is proposed for capturing the deformation and cracking processes of fractured coal. A stress-fracture percolation relation is implemented to simulate the hydro-mechanical coupling processes. The influence of X-direction angles, mechanical strengths, distances and lengths of natural fractures are analyzed in detail. The results are potentially useful to optimize the fracturing design.
期刊介绍:
The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.