M. Lakshani, T. C. Chamindu Deepagoda, S. Hamamoto, B. Elberling, W. Fu, Ting Yang, Jun Fan, Xiaoyi Ma, T. Clough, K. Smits, T. Parameswaran, G. S. Sivakumar Babu, H. Chanakya
{"title":"A new exponential model for predicting soil gas diffusivity with varying degree of saturation","authors":"M. Lakshani, T. C. Chamindu Deepagoda, S. Hamamoto, B. Elberling, W. Fu, Ting Yang, Jun Fan, Xiaoyi Ma, T. Clough, K. Smits, T. Parameswaran, G. S. Sivakumar Babu, H. Chanakya","doi":"10.1002/vzj2.20236","DOIUrl":null,"url":null,"abstract":"Soil gas diffusivity (Dp/Do, gas diffusion coefficients in soil and in free air, respectively) and its relation to soil moisture is of great importance for describing and quantifying essential provisional and regulatory functions associated with terrestrial ecosystems such as soil aeration and greenhouse gas (GHG) emissions. Because gas migration in terrestrial soil systems is predominantly diffusion controlled, soil gas diffusivity becomes a fundamental prerequisite to quantify diffusive gas fluxes. Descriptive–predictive models are often used to estimate Dp/Do from easily measurable soil physical properties. Most of the available models take the form of power‐law functions and often tend to mischaracterize soil moisture effects at high moisture regimes. Based on a wide range Dp/Do data available in literature representing both intact and repacked soils, this study developed a novel air‐saturation‐dependent exponential (ASEX) gas diffusivity model to model Dp/Do in relation to soil air saturation. The model variable α, which represents the diffusivity at half air saturation normalized by the same in complete soil air saturation, could potentially differentiate moisture effects on different soil structural states. For specific applications in intact soils, we propose corresponding α values for upper‐limit (α = .6) and lower‐limit (α = .05) estimates of diffusivity, while an average value (α = .3) for general applications in both intact and repacked soils. As expected, our model based on a few a priori measured supportive data showed a better performance over the classical predictive models that do not use such measurements. The new model was further used to derive useful implications to showcase soil density effects on Dp/Do.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20236","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
Soil gas diffusivity (Dp/Do, gas diffusion coefficients in soil and in free air, respectively) and its relation to soil moisture is of great importance for describing and quantifying essential provisional and regulatory functions associated with terrestrial ecosystems such as soil aeration and greenhouse gas (GHG) emissions. Because gas migration in terrestrial soil systems is predominantly diffusion controlled, soil gas diffusivity becomes a fundamental prerequisite to quantify diffusive gas fluxes. Descriptive–predictive models are often used to estimate Dp/Do from easily measurable soil physical properties. Most of the available models take the form of power‐law functions and often tend to mischaracterize soil moisture effects at high moisture regimes. Based on a wide range Dp/Do data available in literature representing both intact and repacked soils, this study developed a novel air‐saturation‐dependent exponential (ASEX) gas diffusivity model to model Dp/Do in relation to soil air saturation. The model variable α, which represents the diffusivity at half air saturation normalized by the same in complete soil air saturation, could potentially differentiate moisture effects on different soil structural states. For specific applications in intact soils, we propose corresponding α values for upper‐limit (α = .6) and lower‐limit (α = .05) estimates of diffusivity, while an average value (α = .3) for general applications in both intact and repacked soils. As expected, our model based on a few a priori measured supportive data showed a better performance over the classical predictive models that do not use such measurements. The new model was further used to derive useful implications to showcase soil density effects on Dp/Do.
期刊介绍:
Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.