Glivenko–Cantelli theorems for integrated functionals of stochastic processes

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Jia Li, Congshan Zhang, Yunxiao Liu
{"title":"Glivenko–Cantelli theorems for integrated functionals of stochastic processes","authors":"Jia Li, Congshan Zhang, Yunxiao Liu","doi":"10.1214/20-aap1637","DOIUrl":null,"url":null,"abstract":"We prove a Glivenko–Cantelli theorem for integrated functionals of latent continuous-time stochastic processes. Based on a bracketing condition via random brackets, the theorem establishes the uniform convergence of a sequence of empirical occupation measures towards the occupation measure induced by underlying processes over large classes of test functions, including indicator functions, bounded monotone functions, Lipschitz-in-parameter functions, and Hölder classes as special cases. The general Glivenko–Cantelli theorem is then applied in more concrete high-frequency statistical settings to establish uniform convergence results for general integrated functionals of the volatility of efficient price and local moments of microstructure noise.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-aap1637","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a Glivenko–Cantelli theorem for integrated functionals of latent continuous-time stochastic processes. Based on a bracketing condition via random brackets, the theorem establishes the uniform convergence of a sequence of empirical occupation measures towards the occupation measure induced by underlying processes over large classes of test functions, including indicator functions, bounded monotone functions, Lipschitz-in-parameter functions, and Hölder classes as special cases. The general Glivenko–Cantelli theorem is then applied in more concrete high-frequency statistical settings to establish uniform convergence results for general integrated functionals of the volatility of efficient price and local moments of microstructure noise.
随机过程积分泛函的Glivenko–Cantelli定理
我们证明了潜在连续时间随机过程积分泛函的Glivenko–Cantelli定理。基于随机括号的括号条件,该定理建立了一系列经验占用测度对大类测试函数(包括指标函数、有界单调函数、参数函数中的Lipschitz和特殊情况下的Hölder类)上潜在过程诱导的占用测度的一致收敛性。然后,将一般的Glivenko–Cantelli定理应用于更具体的高频统计设置中,以建立有效价格波动性和微观结构噪声局部矩的一般积分泛函的一致收敛结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信