From the laboratory to the interstellar medium: a strategy to search for exotic molecules in space

IF 2.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
C. Puzzarini, S. Alessandrini, L. Bizzocchi, M. Melosso, V. Rivilla
{"title":"From the laboratory to the interstellar medium: a strategy to search for exotic molecules in space","authors":"C. Puzzarini, S. Alessandrini, L. Bizzocchi, M. Melosso, V. Rivilla","doi":"10.3389/fspas.2023.1211784","DOIUrl":null,"url":null,"abstract":"The chemistry of the interstellar medium occurs under extreme conditions and can lead to the formation of exotic molecules. These are species that on Earth are unstable and/or highly reactive. Their discovery in space is usually based on the astronomical observation of their rotational fingerprints, which requires an accurate laboratory investigation. This is based on a strategy that starts from the interplay of experiment and theory. State-of-the-art quantum-chemical calculations are used to predict the relevant spectroscopic information required to guide the spectral recording, analysis and assignment. Rotational spectra measurements are then performed in the centimeter-/millimeter-/submillimeter-wave region, thereby exploiting efficient on-the-fly production protocols for exotic molecules. Subsequently, the spectral analysis leads to accurate spectroscopic parameters, which are then used for setting up accurate line catalogs for astronomical searches and detections. This review is based on the strategy developed and the results obtained at the ROT&Comp Lab of the University of Bologna.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Astronomy and Space Sciences","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fspas.2023.1211784","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The chemistry of the interstellar medium occurs under extreme conditions and can lead to the formation of exotic molecules. These are species that on Earth are unstable and/or highly reactive. Their discovery in space is usually based on the astronomical observation of their rotational fingerprints, which requires an accurate laboratory investigation. This is based on a strategy that starts from the interplay of experiment and theory. State-of-the-art quantum-chemical calculations are used to predict the relevant spectroscopic information required to guide the spectral recording, analysis and assignment. Rotational spectra measurements are then performed in the centimeter-/millimeter-/submillimeter-wave region, thereby exploiting efficient on-the-fly production protocols for exotic molecules. Subsequently, the spectral analysis leads to accurate spectroscopic parameters, which are then used for setting up accurate line catalogs for astronomical searches and detections. This review is based on the strategy developed and the results obtained at the ROT&Comp Lab of the University of Bologna.
从实验室到星际介质:在太空中寻找外来分子的策略
星际介质的化学反应发生在极端条件下,并可能导致外来分子的形成。这些物种在地球上是不稳定和/或高度反应性的。它们在太空中的发现通常是基于对它们旋转指纹的天文观测,这需要精确的实验室调查。这是基于一种从实验和理论的相互作用开始的策略。最先进的量子化学计算用于预测所需的相关光谱信息,以指导光谱记录、分析和分配。然后在厘米/毫米/亚毫米波区域进行旋转光谱测量,从而开发出高效的外来分子动态生产方案。随后,光谱分析导致精确的光谱参数,然后用于建立精确的天文搜索和探测线目录。本综述基于博洛尼亚大学ROT&Comp实验室制定的策略和获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Astronomy and Space Sciences
Frontiers in Astronomy and Space Sciences ASTRONOMY & ASTROPHYSICS-
CiteScore
3.40
自引率
13.30%
发文量
363
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信